Thanks to visit codestin.com
Credit goes to github.com

Skip to content

❗ This is a read-only mirror of the CRAN R package repository. normaliseR — Re-Scale Vectors and Time-Series Features. Homepage: https://hendersontrent.github.io/normaliseR/ Report bugs for this package: https://github.com/hendersontrent/normaliseR/issues

License

Notifications You must be signed in to change notification settings

cran/normaliseR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

normaliseR

Re-Scale Vectors and Time-Series Features

Installation

You can install the development version of normaliseR from GitHub using the following:

devtools::install_github("hendersontrent/normaliseR")

General purpose

normaliseR is a software package for R for rescaling numerical vectors or feature_calculations objects produced by the theft R package for computing time-series features.

Putting calculated feature vectors on an equal scale is crucial for any statistical or machine learning model as variables with high variance can adversely impact the model’s capacity to fit the data appropriately, learn appropriate weight values, or minimise a loss function. normaliseR includes function normalise (or normalize) to rescale either a whole feature_calculations object, or a single vector of values. The following normalisation methods are currently offered:

  • z-score—"zScore"
  • Sigmoid—"Sigmoid"
  • Outlier-robust Sigmoid (credit to Ben Fulcher for creating the original MATLAB version) – "RobustSigmoid"
  • Min-max—"MinMax"
  • Maximum absolute—"MaxAbs"

About

❗ This is a read-only mirror of the CRAN R package repository. normaliseR — Re-Scale Vectors and Time-Series Features. Homepage: https://hendersontrent.github.io/normaliseR/ Report bugs for this package: https://github.com/hendersontrent/normaliseR/issues

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages