Thanks to visit codestin.com
Credit goes to github.com

Skip to content
/ ref.ICAR Public

❗ This is a read-only mirror of the CRAN R package repository. ref.ICAR — Objective Bayes Intrinsic Conditional Autoregressive Model for Areal Data

License

Notifications You must be signed in to change notification settings

cran/ref.ICAR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ref.ICAR R Package

Maintainer: Erica M. Porter [email protected]

Implements an objective Bayes intrinsic conditional autoregressive prior. This model provides an objective Bayesian approach for modeling spatially correlated areal data using an intrinsic conditional autoregressive prior on a vector of spatial random effects.

Version 2.0.1 changes

Version 2.0.2 of ref.ICAR includes minor changes and bug fixes:

  • Changed how the spatial data for Example 2 of the vignette is read in, made necessary by changes to spData package.

  • Changed how the plot for Example 2 of the vignette is generated, due to a conflict with ggplot2 and the updated sf package.

  • Updated the references with correct years and volume numbers.

References

Porter, E.M., Franck, C.T., and Ferreira, M.A.R. (2024), “Objective Bayesian model selection for spatial hierarchical models with intrinsic conditional autoregressive priors,” Bayesian Analysis, International Society for Bayesian Analysis, 19(4), 985-1011. https://doi.org/10.1214/23-BA1375.

Ferreira, M.A.R., Porter, E.M., and Franck, C.T. (2021), “Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects,” Computational Statistics and Data Analysis, 162, 107264. https://doi.org/10.1016/j.csda.2021.107264.

Keefe, M.J., Ferreira, M.A.R., and Franck, C.T. (2018), “On the formal specification of sum-zero constrained intrinsic conditional autoregressive models,” Spatial Statistics, Elsevier {BV}, 24, 54–65. https://doi.org/10.1016/j.spasta.2018.03.007.

Keefe, M.J., Ferreira, M.A.R., and Franck, C.T. (2019), “Objective Bayesian analysis for Gaussian hierarchical models with intrinsic conditional autoregressive priors,” Bayesian Analysis, International Society for Bayesian Analysis, 14, 181–209. https://doi.org/10.1214/18-BA1107.

About

❗ This is a read-only mirror of the CRAN R package repository. ref.ICAR — Objective Bayes Intrinsic Conditional Autoregressive Model for Areal Data

Resources

License

Stars

Watchers

Forks

Packages

No packages published