Thanks to visit codestin.com
Credit goes to github.com

Skip to content
/ vccp Public

❗ This is a read-only mirror of the CRAN R package repository. vccp — Vine Copula Change Point Detection in Multivariate Time Series

License

Notifications You must be signed in to change notification settings

cran/vccp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Readme file of VCCP package

VCCP

The goal of VCCP is to implement Vine Copula Change Points (VCCP) model to estimate the number and location of multiple change points in the functional connectivity structure of multivariate time series. Possible binary segmentation methods of the VCCP model include NBS, OBS, MOSUM, and WBS. You can also check the significance of detected candidates by Stationary Bootstrap or Vuong test method.

Installation

You can install the released version of VCCP from CRAN with:

install.packages("VCCP")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("xinxiong0238/VCCP")

Example

These are some basic examples which show you how to detect changes in the functional connectivity of multivariate time series using different binary segmentation methods and inference tests.

library(vccp)
## basic example code
data <- cbind(1:180, mvn.sim.2.cps(180, 8, seed = 101))
T <- 180

result.NV <- vccp.fun(data, method = "NBS", delta = 30, test = "V")
#> Binary search, round 1 ...
#> Binary search, round 2 ...
#> Binary search, round 3 ...
#> Perform Vuong test on candidates...
getTestPlot(result.NV)
title("VCCP: NBS + Vuong")

result.NB <- vccp.fun(data, method = "NBS", delta = 30, test = "B")
#> Binary search, round 1 ...
#> Binary search, round 2 ...
#> Binary search, round 3 ...
#> Perform stationary bootstrap test on candidates...
getTestPlot(result.NB)
title("VCCP: NBS + Stationary Bootstrap")

result.MV <- vccp.fun(data, method = "MOSUM", delta = 30, test = "V")
#> MOSUM search ...
#> Perform Vuong test on candidates...

getTestPlot(result.MV)
title("VCCP: MOSUM + Vuong")

result.MB <- vccp.fun(data, method = "MOSUM", delta = 30, test = "B")
#> MOSUM search ...
#> Perform stationary bootstrap test on candidates...

getTestPlot(result.MB)
title("VCCP: MOSUM + Stationary Bootstrap")

About

❗ This is a read-only mirror of the CRAN R package repository. vccp — Vine Copula Change Point Detection in Multivariate Time Series

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages