This repository provides datasets, models and code for CoEdIT the instruction-tuned text editing models, with the official implementation of the following paper:
CoEdIT: Text Editing by Task-Specific Instruction Tuning
Vipul Raheja, Dhruv Kumar, Ryan Koo, and Dongyeop Kang
Our code is based on Hugging Face transformers
.
Coming soon.
Coming soon.
Coming soon.
We have uploaded all our model checkpoints to Hugging Face.
Model | Params |
---|---|
CoEdIT-large | 770M |
CoEdIT-xl | 3B |
CoEdIT-xxl | 11B |
CoEdIT-xl-composite | 3B |
You can directly load our models using Hugging Face Transformers.
from transformers import AutoTokenizer, T5ForConditionalGeneration
tokenizer = AutoTokenizer.from_pretrained("grammarly/coedit-xl")
model = T5ForConditionalGeneration.from_pretrained("grammarly/coedit-xl")
input_text = 'Fix grammatical errors in this sentence: New kinds of vehicles will be invented with new technology than today.'
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids, max_length=256)
edited_text = tokenizer.decode(outputs[0], skip_special_tokens=True)[0]
Coming soon.