- Provide and expressive API for CRUD & Complex Query operations on model as a whole
- Provide easy way to work with subset of model fields by using automatically generated
partial_<model>!macro - Provide easy way to run complex queries by using automatically generated
find_<model>!macro - Automatic migration tool that analyzes the
src/model/*.rsfiles and runs migrations according to differences between the model definition and database
- It's build by beta release, so it uses builtin support for
async/awaitin traits that will be stabilized in Rust1.75 - It uses prepared statements (shard/token aware) -> bind values
- It expects
CachingSessionas a session arg for operations - Queries are macro generated str constants (no concatenation at runtime)
- By using
find_<model>!macro we can run complex queries that are generated at compile time as&'static str - Although it has expressive API it's thin layer on top of scylla_rust_driver, and it does not introduce any significant overhead
- Charybdis Models
- Automatic migration with
charybdis-migrate - Basic Operations
- Partial Model Operations
- Callbacks
- Batch Operations
- Collection queries
- Ignored fields
- Roadmap
Declare model as a struct within src/models dir:
// src/modles/user.rs
use charybdis::macros::charybdis_model;
use charybdis::types::{Text, Timestamp, Uuid};
#[charybdis_model(
table_name = users,
partition_keys = [id],
clustering_keys = [],
global_secondary_indexes = [],
local_secondary_indexes = [],
)]
pub struct User {
pub id: Uuid,
pub username: Text,
pub email: Text,
pub created_at: Timestamp,
pub updated_at: Timestamp,
pub address: Address,
}(Note we use src/models as automatic migration tool expects that dir)
src/models/udts
// src/models/udts/address.rs
use use charybdis::macros::charybdis_udt_model;;
use charybdis::types::Text;
#[charybdis_udt_model(type_name = address)]
pub struct Address {
pub street: Text,
pub city: Text,
pub state: Option<Text>,
pub zip: Text,
pub country: Text,
}src/models/materialized_views
// src/models/materialized_views/users_by_username.rs
use use charybdis::macros::charybdis_view_model;;
use charybdis::types::{Text, Timestamp, Uuid};
#[charybdis_view_model(
table_name=users_by_username,
base_table=users,
partition_keys=[username],
clustering_keys=[id]
)]
pub struct UsersByUsername {
pub username: Text,
pub id: Uuid,
pub email: Text,
pub created_at: Timestamp,
pub updated_at: Timestamp,
}Resulting auto-generated migration query will be:
CREATE MATERIALIZED VIEW IF NOT EXISTS users_by_email
AS SELECT created_at, updated_at, username, email, id
FROM users
WHERE email IS NOT NULL AND id IS NOT NULL
PRIMARY KEY (email, id)
charybdis-migrate tool that enables automatic migration to database without need to write migrations by hand.
It expects src/models files and generates migrations based on differences between model definitions and database.
It supports following operations:
- Create new tables
- Create new columns
- Drop columns
- Change field types (drop and recreate column
--drop-and-replaceflag) - Create secondary indexes
- Drop secondary indexes
- Create UDTs (
src/models/udts) - Create materialized views (
src/models/materialized_views) - Table options
#[charybdis_model( table_name = commits, partition_keys = [object_id], clustering_keys = [created_at, id], global_secondary_indexes = [], local_secondary_indexes = [], table_options = #r" WITH CLUSTERING ORDER BY (created_at DESC) AND gc_grace_seconds = 86400 "; )] #[derive(Serialize, Deserialize, Default)] pub struct Commit {...}
⚠️ If table exists, table options will result in alter table query that withoutCLUSTERING ORDERandCOMPACT STORAGEoptions.
Model dropping is not added. If you don't define model within src/model dir
it will leave db structure as it is.
cargo install charybdis-migrate
migrate --hosts <host> --keyspace <your_keyspace> --drop-and-replace (optional)modelize command that will generate src/models files from existing data source.
#[charybdis_model(
table_name = users,
partition_keys = [id],
clustering_keys = [],
global_secondary_indexes = [username]
)]They are defined as array of tuples
- first element is array of partition keys
- second element is array of clustering keys
#[charybdis_model(
table_name = menus,
partition_keys = [location],
clustering_keys = [name, price, dish_type],
global_secondary_indexes = [],
local_secondary_indexes = [
([location], [dish_type])
]
)]resulting query will be: CREATE INDEX ON menus((location), dish_type);
For each operation you need to bring respective trait into scope. They are defined
in charybdis::operations module.
use charybdis::{CachingSession, Insert};
#[tokio::main]
async fn main() {
let session: &CachingSession; // init sylla session
// init user
let user: User = User {
id,
email: "[email protected]".to_string(),
username: "charybdis".to_string(),
created_at: Utc::now(),
updated_at: Utc::now(),
address: Some(
Address {
street: "street".to_string(),
state: "state".to_string(),
zip: "zip".to_string(),
country: "country".to_string(),
city: "city".to_string(),
}
),
};
// create
user.insert(&session).await;
}-
let user = User {id, ..Default::default()}; let user = user.find_by_primary_key(&session).await?;
-
let users = User {id, ..Default::default()}.find_by_partition_key(&session).await;
-
Lets say we have model:
#[charybdis_model( table_name = posts, partition_keys = [date], clustering_keys = [categogry_id, title], global_secondary_indexes = []) ] pub struct Post { date: Date, category_id: Uuid, title: String, id: Uuid, ... }
Post::find_by_date(session: &CachingSession, date: Date) -> Result<CharybdisModelStream<Post>, CharybdisError> Post::find_by_date_and_category_id(session: &CachingSession, date: Date, category_id: Uuid) -> Result<CharybdisModelStream<Post>, CharybdisError> Post::find_by_date_and_category_id_and_title(session: &CachingSession, date: Date, category_id: Uuid, title: String) -> Result<Post, CharybdisError>
We have macro generated functions for up to 3 fields from primary key. Note that if complete primary key is provided, we get single typed result. So in case of our User model, we would get:
User::find_by_id(session: &CachingSession, id: Uuid) -> Result<User, CharybdisError>
Let's say we have a model:
#[charybdis_model(
table_name = posts,
partition_keys = [category_id],
clustering_keys = [date, title],
global_secondary_indexes = []
)]
pub struct Post {...}We get automatically generated find_post! macro that follows convention find_<struct_name>!.
It can be used to create custom queries.
Following will return stream of Post models, and query will be constructed at compile time as &'static str.
// automatically generated macro rule
let posts = find_post!(
session,
"category_id in ? AND date > ?",
(categor_vec, date])
).await?;We can also use find_first_post! macro to get single result:
let post = find_first_post!(
session,
"category_id in ? AND date > ? LIMIT 1",
(date, categor_vec)
).await?;If we just need the Query and not the result, we can use find_post_query! macro:
let query = find_post_query!(
"date = ? AND category_id in ?",
(date, categor_vec)let user = User::from_json(json);
user.username = "scylla".to_string();
user.email = "[email protected]";
user.update(&session).await; let user = User::from_json(json);
user.delete(&session).await;#[charybdis_model(
table_name = posts,
partition_keys = [date],
clustering_keys = [categogry_id, title],
global_secondary_indexes = [])
]
pub struct Post {
date: Date,
category_id: Uuid,
title: String,
id: Uuid,
...
}We have macro generated functions for up to 3 fields from primary key.
Post::delete_by_date(session: &CachingSession, date: Date);
Post::delete_by_date_and_category_id(session: &CachingSession, date: Date, category_id: Uuid);
Post::delete_by_date_and_category_id_and_title(session: &CachingSession, date: Date, category_id: Uuid, title: String);Use auto generated partial_<model>! macro to run operations on subset of the model fields.
This macro generates a new struct with same structure as the original model, but only with provided fields.
Macro is automatically generated by #[charybdis_model].
It follows convention partial_<struct_name>!.
// auto-generated macro - available in crate::models::user
partial_user!(UpdateUsernameUser, id, username);
let id = Uuid::new_v4();
let user = UpdateUsernameUser { id, username: "scylla".to_string() };
// we can have same operations as on base model
// INSERT into users (id, username) VALUES (?, ?)
user.insert(&session).await;
// UPDATE users SET username = ? WHERE id = ?
user.update(&session).await;
// DELETE FROM users WHERE id = ?
user.delete(&session).await;
// get partial PartUser
let partial_user = user.find_by_primary_key(&:session).await?;
// get native user model by primary key
let user = user.as_native().find_by_primary_key(&session).await?;partial_<model>requires#[derive(Default)]on original modelpartial_<model>require complete primary key in definition- All derives that are defined bellow
#charybdis_modelmacro will be automatically added to partial model. partial_<model>struct implements same field attributes as original model, so if we have#[serde(rename = "rootId")]on original model field, it will be present on partial model field.
In case we need to run operations on native model, we can use as_native method:
partial_user!(UpdateUser, id, username);
let mut update_user_username = UpdateUser {
id,
username: "updated_username".to_string(),
};
let native_user: User = update_user_username.as_native().find_by_primary_key(&session).await?;
// action that requires native model
authorize_user(&native_user);as_native works by returning new instance of native model with fields from partial model.
For other fields it uses default values.
Recommended naming convention is Purpose + Original Struct Name. E.g:
UpdateAdresssUser, UpdateDescriptionPost.
We can define callbacks that will be executed before and after certain operations.
Note that callbacks returns custom error class that implements From<CharybdisError>.
use charybdis::*;
#[charybdis_model(
table_name = organizations,
partition_keys = [id],
clustering_keys = [],
global_secondary_indexes = [name]
)]
pub struct Organization {
...
}
impl Organization {
pub async fn find_by_name(&self, session: &CachingSession) -> Option<Organization> {
find_first_organization!(session, "name = ?", (&self.name,)).await.ok()
}
}
impl Callbacks for Organization {
type Error = CustomError;
async fn before_insert(&self, session: &CachingSession) -> Result<(), CustomError> {
if self.find_by_name(session).await.is_some() {
return Err(CustomError::ValidationError((
"name".to_string(),
"is taken".to_string(),
)));
}
Ok(())
}
}Possible callbacks:
before_insertafter_insertbefore_updateafter_updatebefore_deleteafter_delete
insert method on model, we can call
insert_cb. This enables us to have clear distinction between insert and insert with callbacks.
let post = Post::from_json(json);
let res = post.insert_cb(&session).await;
match res {
Ok(_) => println!("success"),
Err(e) => match e {
CharybdisError::ValidationError((field, reason)) => {
println!("validation error: {} {}", field, reason)
}
_ => println!("error: {:?}", e),
},
}We can also define callbacks that will be given custom extension if needed.
Let's say we define custom extension that will be used to update elastic document on every post update:
pub struct CustomExtension {
pub elastic_client: ElasticClient,
}We can define after_update callback on Post
that has custom extension as type:
#[charybdis_model(...)]
pub struct Post {}
impl ExtCallbacks for Post {
type Extention = CustomExtension;
type Error = CustomError;
async fn after_update(
&mut self,
_db_session: &CachingSession,
extension: &CustomExtension,
) -> Result<(), CustomError> {
extension.elastic_client.update(...).await?;
Ok(())
}
}So to trigger callback we use same update_cb method:
let post = Post::from_json(json);
let res = post.update_cb(&session, custom_extensions).await;Note that CustomError has to implement From<CharybdisError>.
For batched operations we can make use of CharybdisModelBatch.
let mut batch = CharybdisModelBatch::new();
let users: Vec<User> = Vec::from_json(json);
// inserts
batch.append_inserts(users);
// or updates
batch.append_updates(users);
// or deletes
batch.append_deletes(users);
batch.execute(&session).await;It also supports chunked batch operations
chunk_size = 100;
CharybdisModelBatch::chunked_inserts(&session, users, chunk_size).await?;For every field that is defined with List<T> type or Set<T>, we get following:
PUSH_<field_name>_QUERYstatic strPULL_<field_name>_QUERYstatic strpush_<field_name>methodpull_<field_name>method
pub struct User {
id: Uuid,
tags: Set<String>,
post_ids: List<Uuid>,
}
let query = User::PUSH_TAGS_QUERY;
execute(query, (vec![tag], &user.id)).await;
let query = User::PULL_POST_IDS_QUERY;
execute(query, (post_ids_vec, &user.id)).await;Methods take session and value as arguments:
let user = User::from_json(json);
user.push_tags(&session, vec![tag]).await;
user.pull_post_ids(&session, post_ids_vec).await;We can ignore fields by using #[charybdis(ignore)] attribute:
#[charybdis_model(...)]
pub struct User {
id: Uuid,
#[charybdis(ignore)]
organization: Option<Organization>,
}So field organization will be ignored in all operations and
default value will be used when deserializing from other data sources.
It can be used to hold data that is not persisted in database.
- Add tests
- Write
modelizecommand to generatesrc/models/*structs from existing database - Add --drop flag to migrate command to drop tables, types and UDTs if they are not defined in
src/models