Thanks to visit codestin.com
Credit goes to github.com

Skip to content

danvega/java-rag

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Spring AI RAG Demo

A demonstration project showcasing Retrieval Augmented Generation (RAG) implementation using Spring AI and OpenAI's GPT models. This application enables intelligent document querying by combining the power of Large Language Models (LLMs) with local document context.

Overview

This project demonstrates how to:

  • Ingest PDF documents into a vector database
  • Perform semantic searches using Spring AI
  • Augment LLM responses with relevant document context
  • Create an API endpoint for document-aware chat interactions

Project Requirements

Dependencies

The project uses the following Spring Boot starters and dependencies:

<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-openai-spring-boot-starter</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-pdf-document-reader</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-pgvector-store-spring-boot-starter</artifactId>
    </dependency>
</dependencies>

Getting Started

  1. Configure your environment variables:
OPENAI_API_KEY=your_api_key_here
  1. Update application.properties:
spring.ai.openai.api-key=${OPENAI_API_KEY}
spring.ai.openai.chat.model=gpt-4
spring.ai.vectorstore.pgvector.initialize-schema=true
  1. Place your PDF documents in the src/main/resources/docs directory

Running the Application

  1. Start Docker Desktop

  2. Launch the application:

./mvnw spring-boot:run

The application will:

  • Start a PostgreSQL database with PGVector extension
  • Initialize the vector store schema
  • Ingest documents from the configured location
  • Start a web server on port 8080

Key Components

IngestionService

The IngestionService handles document processing and vector store population:

@Component
public class IngestionService implements CommandLineRunner {
    private final VectorStore vectorStore;
    
    @Value("classpath:/docs/your-document.pdf")
    private Resource marketPDF;
    
    @Override
    public void run(String... args) {
        var pdfReader = new ParagraphPdfDocumentReader(marketPDF);
        TextSplitter textSplitter = new TokenTextSplitter();
        vectorStore.accept(textSplitter.apply(pdfReader.get()));
    }
}

ChatController

The ChatController provides the REST endpoint for querying documents:

@RestController
public class ChatController {
    private final ChatClient chatClient;

    public ChatController(ChatClient.Builder builder, VectorStore vectorStore) {
        this.chatClient = builder
                .defaultAdvisors(new QuestionAnswerAdvisor(vectorStore))
                .build();
    }

    @GetMapping("/")
    public String chat() {
        return chatClient.prompt()
                .user("Your question here")
                .call()
                .content();
    }
}

Making Requests

Query the API using curl or your preferred HTTP client:

curl http://localhost:8080/

The response will include context from your documents along with the LLM's analysis.

Architecture Highlights

  • Document Processing: Uses Spring AI's PDF document reader to parse documents into manageable chunks
  • Vector Storage: Utilizes PGVector for efficient similarity searches
  • Context Retrieval: Automatically retrieves relevant document segments based on user queries
  • Response Generation: Combines document context with GPT-4's capabilities for informed responses

Best Practices

  1. Document Ingestion

    • Consider implementing checks before reinitializing the vector store
    • Use scheduled tasks for document updates
    • Implement proper error handling for document processing
  2. Query Optimization

    • Monitor token usage
    • Implement rate limiting
    • Cache frequently requested information
  3. Security

    • Secure your API endpoints
    • Protect sensitive document content
    • Safely manage API keys

About

Java AI + Spring AI + RAG Example

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages