Thanks to visit codestin.com
Credit goes to github.com

Skip to content

This repository implements a production-grade foundation for agentic governance that transforms policy and legislation into executable, accountable Decision Functions. It represents an open standard for Agentic State where every automated decision is bound to law, signed and explainable.

License

Notifications You must be signed in to change notification settings

data-riot/policy-as-code

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

42 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Policy as Code - Foundation for Agentic State

Building toward an open standard for Agentic State, where every automated decision will be bound to law, signed and explainable. Current implementation provides Decision Engineering foundation with basic policy-as-code capabilities, legal compliance framework, and extensible architecture for future agentic features.

Python 3.8+ License: MIT Status: Foundation


๐Ÿš€ Get Started in 2 Minutes

# Clone and install (minimal dependencies)
git clone https://github.com/your-org/policy-as-code.git
cd policy-as-code
pip3 install -e .

# Initialize and run your first decision
policy-as-code init
python3 examples/simple_demo.py

That's it! You now have a working Policy as Code system. ๐ŸŽ‰


๐ŸŽฏ What is Policy as Code?

Policy as Code transforms business rules into executable, auditable software. Think of it as "Git for business decisions" - every decision is:

  • โœ… Versioned - Track changes over time
  • โœ… Testable - Automated testing and validation
  • โœ… Auditable - Complete decision history
  • โœ… Extensible - Framework for advanced features

Real-World Example

Instead of this manual process:

โŒ Manual: "Check if income > $50k and credit score > 700"
โŒ Manual: "Write decision in Word document"
โŒ Manual: "Email to manager for approval"
โŒ Manual: "Store in filing cabinet"

You get this automated process:

โœ… Code: def loan_approval(data):
โœ… Code:   return {"approved": data.income > 50000 and data.credit_score > 700}
โœ… Code: # Automatically versioned, tested, and auditable

๐Ÿ“Š What Works Right Now

โœ… Core Features (Working)

  • CLI Interface - Deploy, execute, and manage decision functions
  • Basic Decision Functions - Simple business logic with validation
  • Working Examples - Loan approval, basic approval, multi-criteria decisions
  • Progressive Learning - Step-by-step examples that actually work
  • Extensible Architecture - Ready for advanced features

๐Ÿšง In Development

  • Legal Compliance Framework - Finlex/EUR-Lex integration
  • Digital Signatures - Change control and separation of duties
  • Immutable Trace Ledger - Hash-chained audit trail
  • Agentic AI Integration - LLM-powered reasoning

๐Ÿ”ฎ Future Vision

  • EU AI Act Compliance - High-risk system compliance
  • Cross-Border Architecture - EU AI Commons implementation
  • Citizen Explanation API - Human-readable decision justifications
  • Advanced Governance - Drift detection and independent audit

๐ŸŽ“ Quick Learning Path

Level 1: Basic Decisions (5 minutes)

python3 examples/simple_demo.py

What you'll learn: Simple decision structure, input/output validation, basic business rules

Level 2: CLI Usage (10 minutes)

policy-as-code init
policy-as-code deploy loan_approval 1.0 examples/simple_demo.py
policy-as-code execute loan_approval '{"credit_score": 750, "income": 75000}'

What you'll learn: Function deployment, execution, registry management

Level 3: Multi-Criteria Decisions (15 minutes)

python3 examples/level1_basic_approval.py
python3 examples/level1_loan_approval.py

What you'll learn: Complex business logic, multiple criteria, error handling

Level 4: OPA Integration (60 minutes)

  • python3 examples/opa_demo.py - Shows Python-OPA bridge
  • OPA/Rego policy integration
  • Integration challenges and solutions

Level 5: Build Your Own (90 minutes)


๐Ÿ—๏ธ How It Works

1. Write Your Business Logic

def loan_approval(input_data):
    """Simple loan approval logic"""
    credit_score = input_data.get("credit_score", 0)
    income = input_data.get("income", 0)

    if credit_score >= 700 and income >= 50000:
        return {"approved": True, "amount": min(income * 3, 500000)}
    else:
        return {"approved": False, "reason": "Criteria not met"}

2. Deploy and Execute

# Deploy your function
policy-as-code deploy loan_approval 1.0 loan_approval.py

# Execute with real data
policy-as-code execute loan_approval '{"credit_score": 750, "income": 75000}'

3. Get Automatic Benefits

  • โœ… Input Validation - Automatic data validation
  • โœ… Output Validation - Consistent response format
  • โœ… Audit Trail - Every decision is logged
  • โœ… Version Control - Track changes over time
  • โœ… CLI Management - Easy deployment and execution

๐ŸŽฏ Real-World Use Cases

Government & Public Sector

  • Social Benefits - Automated welfare eligibility
  • Tax Calculation - Complex tax computations
  • Immigration - Visa processing workflows
  • Healthcare - Medical procedure eligibility

Financial Services

  • Loan Approval - Credit risk assessment
  • Insurance - Policy underwriting
  • Compliance - Regulatory requirement checking
  • Fraud Detection - Risk scoring algorithms

Business Operations

  • HR Policies - Employee benefit calculations
  • Pricing Rules - Dynamic pricing logic
  • Approval Workflows - Multi-step decision processes
  • Compliance - Regulatory requirement validation

๐Ÿš€ Key Features

๐Ÿ”’ Immutable Audit Trail

Every decision is cryptographically signed and stored in an append-only ledger.

๐Ÿ“œ Legal Compliance

Built-in support for legal references (Finlex, EUR-Lex) and EU AI Act compliance.

๐Ÿง  AI-Powered Reasoning

LLM integration for complex decision-making and natural language explanations.

๐Ÿ“Š Performance Monitoring

Real-time metrics, alerting, and comprehensive analytics.

๐Ÿ”Œ Multiple Interfaces

CLI, REST API, GraphQL, WebSocket, and Python SDK for any integration need.


๐Ÿ—๏ธ Current Architecture

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                    Policy as Code Foundation                โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ โ€ข CLI Interface      โ€ข Decision Engine                      โ”‚
โ”‚ โ€ข Basic Validation   โ€ข Function Registry                    โ”‚
โ”‚ โ€ข Working Examples   โ€ข Extensible Framework                 โ”‚
โ”‚ โ€ข Documentation      โ€ข Future-Ready Architecture           โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Architecture Layers

Layer Function Status
CLI Layer Command-line interface for function management โœ… Working
Decision Engine Basic function execution and validation โœ… Working
Registry Layer Function storage and versioning โœ… Working
Examples Layer Working demos and learning path โœ… Working

๐Ÿš€ Get Started Now

Option 1: Quick Start (2 minutes)

git clone https://github.com/your-org/policy-as-code.git
cd policy-as-code
pip3 install -e .
policy-as-code init
python3 examples/simple_demo.py

Option 2: Learn Step by Step (1 hour)

  1. Level 1: python3 examples/simple_demo.py
  2. Level 2: Use CLI to deploy and execute functions
  3. Level 3: Try multi-criteria examples
  4. Level 4: Build your own decision function

Option 3: Production Setup (30 minutes)

# Install with production dependencies
pip3 install -e ".[production]"

# Start API server
python3 bin/run_api.py

๐Ÿ†˜ Need Help?


๐Ÿ“š Documentation


๐Ÿค Contributing

We welcome contributions! See our Contributing Guide for details.

Quick Contribution Setup

git clone https://github.com/your-org/policy-as-code.git
cd policy-as-code
pip3 install -e ".[dev]"
make test
make lint

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.


๐ŸŒŸ Why Policy as Code Foundation?

We're building the foundation for accountable automation.

This Policy as Code foundation provides the essential building blocks for transforming governance - from manual, error-prone processes to automated, auditable, and intelligent decision-making systems.

  • โœ… Working Foundation - Basic decision functions with validation and testing
  • โœ… CLI Interface - Easy deployment and execution of decision functions
  • โœ… Extensible Architecture - Ready for legal compliance and agentic features
  • โœ… Clear Roadmap - Path toward Agentic State with legal binding
  • โœ… Open Source - MIT licensed for maximum adoption

Ready to start building accountable automation? Get started now! ๐Ÿš€


๐Ÿ—บ๏ธ Roadmap to Agentic State

Phase 1: Foundation (Current)

  • โœ… Basic decision functions with validation
  • โœ… CLI interface for function management
  • โœ… Working examples and documentation
  • โœ… Extensible architecture

Phase 2: Legal Compliance (Next)

  • ๐Ÿ”„ Finlex/EUR-Lex integration
  • ๐Ÿ”„ Legal reference validation
  • ๐Ÿ”„ EU AI Act compliance framework
  • ๐Ÿ”„ Digital signature infrastructure

Phase 3: Agentic Features

  • ๐Ÿ”ฎ LLM integration for reasoning
  • ๐Ÿ”ฎ Conversational interfaces
  • ๐Ÿ”ฎ Workflow orchestration
  • ๐Ÿ”ฎ Multi-agent coordination

Phase 4: Cross-Border

  • ๐Ÿ”ฎ EU AI Commons implementation
  • ๐Ÿ”ฎ Nordic-Baltic pioneer deployment
  • ๐Ÿ”ฎ Multilingual AI support
  • ๐Ÿ”ฎ Cross-border APIs

Built with โค๏ธ for the future of accountable automation

About

This repository implements a production-grade foundation for agentic governance that transforms policy and legislation into executable, accountable Decision Functions. It represents an open standard for Agentic State where every automated decision is bound to law, signed and explainable.

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages