- An implementation for Benchmarking Large Language Models in Retrieval-Augmented Generation
conda create -n rgb python=3.10.0
conda activate rgb
bash env.shThe data is putted in data/
data/
├── en.json
├── en_int.json
├── en_fact.json
├── zh.json
├── zh_int.json
└── zh_fact.json
To evalute the Information Integration, you should use zh_int or en_int for Chinese questions or English questions.
To evalute the Counterfactual Robustness, you should use zh_fact or en_fact for Chinese questions or English questions.
For evaluating ChatGPT, you can run as:
python evalue.py \
--dataset en \
--modelname chatgpt \
--temp 0.2 \
--noise_rate 0.6 \
--api_key YourAPIKEY For evaluating other models, you can run as:
python evalue.py \
--dataset en \
--modelname chatglm2-6b \
--temp 0.2 \
--noise_rate 0.6 \
--plm THUDM/chatglm-6b You should change modelname and plm for different models, where plm is the path of model.
temp is the temperature of model.
noise_rate is rate of noisy documents in inputs.
The outputs are:
- all_rate: The accuracy (noise_rate<1) or rejection rate (noise_rate=1)
- fact_check_rate: the error detection rates (ED)
To evaluate rejection using ChatGPT, you should first run the evalue.py in noise_rate=1 to obtain the generation result, and then run:
python reject_evalue.py \
--dataset en \
--modelname chatglm2-6b \
--api_key YourAPIKEYThe "reject_rate" in the outputs are the reject rate (Rej*).
To evaluate counterfactual robustness using ChatGPT, you should first run the evalue.py in dataset=en_fact/zh_fact to obtain the generation result, and then run:
python fact_evalue.py \
--dataset en_fact \
--modelname chatglm2-6b \
--api_key YourAPIKEYThe "reject_rate" in the outputs are the error detection rates (ED*). The correct_rate in the outputs are the error correction rate (CR)