This is a quick introduction to get new developers up to speed on Graphene.
For Ubuntu 14.04 LTS users, see this link first: https://github.com/cryptonomex/graphene/wiki/build-ubuntu
and then proceed with:
git clone https://github.com/cryptonomex/graphene.git
cd graphene
git submodule update --init --recursive
cmake -DCMAKE_BUILD_TYPE=Debug .
make
./programs/witness_node/witness_node
This will launch the witness node. If you would like to launch the command-line wallet, you must first specify a port
for communication with the witness node. To do this, add text to witness_node_data_dir/config.ini as follows, then
restart the node:
rpc-endpoint = 127.0.0.1:8090
Then, in a separate terminal window, start the command-line wallet cli_wallet:
./programs/cli_wallet/cli_wallet
To set your iniital password to 'password' use:
>>> set_password password
>>> unlock password
To import your initial balance:
>>> import_balance nathan [5KQwrPbwdL6PhXujxW37FSSQZ1JiwsST4cqQzDeyXtP79zkvFD3] true
If you send private keys over this connection, rpc-endpoint should be bound to localhost for security.
A list of CLI wallet commands is available here.
Check how much code is covered by unit tests, using gcov/lcov (see http://ltp.sourceforge.net/coverage/lcov.php ).
cmake -D ENABLE_COVERAGE_TESTING=true -D CMAKE_BUILD_TYPE=Debug .
make
lcov --capture --initial --directory . --output-file base.info --no-external
libraries/fc/bloom_test
libraries/fc/task_cancel_test
libraries/fc/api
libraries/fc/blind
libraries/fc/ecc_test test
libraries/fc/real128_test
libraries/fc/lzma_test README.md
libraries/fc/ntp_test
tests/intense_test
tests/app_test
tests/chain_bench
tests/chain_test
tests/performance_test
lcov --capture --directory . --output-file test.info --no-external
lcov --add-tracefile base.info --add-tracefile test.info --output-file total.info
lcov -o interesting.info -r total.info libraries/fc/vendor/\* libraries/fc/tests/\* tests/\*
mkdir -p lcov
genhtml interesting.info --output-directory lcov --prefix `pwd`
Now open lcov/index.html in a browser.
We use the Boost unit test framework for unit testing. Most unit
tests reside in the chain_test build target.
The role of the witness node is to broadcast transactions, download blocks, and optionally sign them.
./witness_node --rpc-endpoint 127.0.0.1:8090 --enable-stale-production -w '"1.6.0"' '"1.6.1"' '"1.6.2"' '"1.6.3"' '"1.6.4"' '"1.6.5"' '"1.6.6"' '"1.6.7"' '"1.6.8"' '"1.6.9"' '"1.6.10"' '"1.6.11"' '"1.6.12"' '"1.6.13"' '"1.6.14"' '"1.6.15"' '"1.6.16"' '"1.6.17"' '"1.6.18"' '"1.6.19"' '"1.6.20"' '"1.6.21"' '"1.6.22"' '"1.6.23"' '"1.6.24"' '"1.6.25"' '"1.6.26"' '"1.6.27"' '"1.6.28"' '"1.6.29"' '"1.6.30"' '"1.6.31"' '"1.6.32"' '"1.6.33"' '"1.6.34"' '"1.6.35"' '"1.6.36"' '"1.6.37"' '"1.6.38"' '"1.6.39"' '"1.6.40"' '"1.6.41"' '"1.6.42"' '"1.6.43"' '"1.6.44"' '"1.6.45"' '"1.6.46"' '"1.6.47"' '"1.6.48"' '"1.6.49"' '"1.6.50"' '"1.6.51"' '"1.6.52"' '"1.6.53"' '"1.6.54"' '"1.6.55"' '"1.6.56"' '"1.6.57"' '"1.6.58"' '"1.6.59"' '"1.6.60"' '"1.6.61"' '"1.6.62"' '"1.6.63"' '"1.6.64"' '"1.6.65"' '"1.6.66"' '"1.6.67"' '"1.6.68"' '"1.6.69"' '"1.6.70"' '"1.6.71"' '"1.6.72"' '"1.6.73"' '"1.6.74"' '"1.6.75"' '"1.6.76"' '"1.6.77"' '"1.6.78"' '"1.6.79"' '"1.6.80"' '"1.6.81"' '"1.6.82"' '"1.6.83"' '"1.6.84"' '"1.6.85"' '"1.6.86"' '"1.6.87"' '"1.6.88"' '"1.6.89"' '"1.6.90"' '"1.6.91"' '"1.6.92"' '"1.6.93"' '"1.6.94"' '"1.6.95"' '"1.6.96"' '"1.6.97"' '"1.6.98"' '"1.6.99"' '"1.6.100"'
tests/chain_tests -t block_tests/name_of_test
We provide several different API's. Each API has its own ID.
When running witness_node, initially two API's are available:
API 0 provides read-only access to the database, while API 1 is
used to login and gain access to additional, restricted API's.
Here is an example using wscat package from npm for websockets:
$ npm install -g wscat
$ wscat -c ws://127.0.0.1:8090
> {"id":1, "method":"call", "params":[0,"get_accounts",[["1.2.0"]]]}
< {"id":1,"result":[{"id":"1.2.0","annotations":[],"membership_expiration_date":"1969-12-31T23:59:59","registrar":"1.2.0","referrer":"1.2.0","lifetime_referrer":"1.2.0","network_fee_percentage":2000,"lifetime_referrer_fee_percentage":8000,"referrer_rewards_percentage":0,"name":"committee-account","owner":{"weight_threshold":1,"account_auths":[],"key_auths":[],"address_auths":[]},"active":{"weight_threshold":6,"account_auths":[["1.2.5",1],["1.2.6",1],["1.2.7",1],["1.2.8",1],["1.2.9",1],["1.2.10",1],["1.2.11",1],["1.2.12",1],["1.2.13",1],["1.2.14",1]],"key_auths":[],"address_auths":[]},"options":{"memo_key":"GPH1111111111111111111111111111111114T1Anm","voting_account":"1.2.0","num_witness":0,"num_committee":0,"votes":[],"extensions":[]},"statistics":"2.7.0","whitelisting_accounts":[],"blacklisting_accounts":[]}]}
We can do the same thing using an HTTP client such as curl for API's which do not require login or other session state:
$ curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "get_accounts", [["1.2.0"]]], "id": 1}' http://127.0.0.1:8090/rpc
{"id":1,"result":[{"id":"1.2.0","annotations":[],"membership_expiration_date":"1969-12-31T23:59:59","registrar":"1.2.0","referrer":"1.2.0","lifetime_referrer":"1.2.0","network_fee_percentage":2000,"lifetime_referrer_fee_percentage":8000,"referrer_rewards_percentage":0,"name":"committee-account","owner":{"weight_threshold":1,"account_auths":[],"key_auths":[],"address_auths":[]},"active":{"weight_threshold":6,"account_auths":[["1.2.5",1],["1.2.6",1],["1.2.7",1],["1.2.8",1],["1.2.9",1],["1.2.10",1],["1.2.11",1],["1.2.12",1],["1.2.13",1],["1.2.14",1]],"key_auths":[],"address_auths":[]},"options":{"memo_key":"GPH1111111111111111111111111111111114T1Anm","voting_account":"1.2.0","num_witness":0,"num_committee":0,"votes":[],"extensions":[]},"statistics":"2.7.0","whitelisting_accounts":[],"blacklisting_accounts":[]}]}
API 0 is accessible using regular JSON-RPC:
$ curl --data '{"jsonrpc": "2.0", "method": "get_accounts", "params": [["1.2.0"]], "id": 1}' http://127.0.0.1:8090/rpc
You can restrict API's to particular users by specifying an apiaccess file in config.ini. Here is an example apiaccess file which allows
user bytemaster with password supersecret to access four different API's, while allowing any other user to access the three public API's
necessary to use the wallet:
{
"permission_map" :
[
[
"bytemaster",
{
"password_hash_b64" : "9e9GF7ooXVb9k4BoSfNIPTelXeGOZ5DrgOYMj94elaY=",
"password_salt_b64" : "INDdM6iCi/8=",
"allowed_apis" : ["database_api", "network_broadcast_api", "history_api", "network_node_api"]
}
],
[
"*",
{
"password_hash_b64" : "*",
"password_salt_b64" : "*",
"allowed_apis" : ["database_api", "network_broadcast_api", "history_api"]
}
]
]
}
Passwords are stored in base64 as salted sha256 hashes. A simple Python script, saltpass.py is avaliable to obtain hash and salt values from a password.
A single asterisk "*" may be specified as username or password hash to accept any value.
With the above configuration, here is an example of how to call add_node from the network_node API:
{"id":1, "method":"call", "params":[1,"login",["bytemaster", "supersecret"]]}
{"id":2, "method":"call", "params":[1,"network_node",[]]}
{"id":3, "method":"call", "params":[2,"add_node",["127.0.0.1:9090"]]}
Note, the call to network_node is necessary to obtain the correct API identifier for the network API. It is not guaranteed that the network API identifier will always be 2.
Since the network_node API requires login, it is only accessible over the websocket RPC. Our doxygen documentation contains the most up-to-date information
about API's for the witness node and the
wallet.
If you want information which is not available from an API, it might be available
from the database;
it is fairly simple to write API methods to expose database methods.
See the documentation if you want to run a private testnet.
-
Is there a way to generate help with parameter names and method descriptions?
Yes. Documentation of the code base, including APIs, can be generated using Doxygen. Simply run
doxygenin this directory.If both Doxygen and perl are available in your build environment, the CLI wallet's
helpandgethelpcommands will display help generated from the doxygen documentation.If your CLI wallet's
helpcommand displays descriptions without parameter names likesigned_transaction transfer(string, string, string, string, string, bool)it means CMake was unable to find Doxygen or perl during configuration. If found, the output should look like this:signed_transaction transfer(string from, string to, string amount, string asset_symbol, string memo, bool broadcast) -
Is there a way to allow external program to drive
cli_walletvia websocket, JSONRPC, or HTTP?Yes. External programs may connect to the CLI wallet and make its calls over a websockets API. To do this, run the wallet in server mode, i.e.
cli_wallet -s "127.0.0.1:9999"and then have the external program connect to it over the specified port (in this example, port 9999). -
Is there a way to access methods which require login over HTTP?
No. Login is inherently a stateful process (logging in changes what the server will do for certain requests, that's kind of the point of having it). If you need to track state across HTTP RPC calls, you must maintain a session across multiple connections. This is a famous source of security vulnerabilities for HTTP applications. Additionally, HTTP is not really designed for "server push" notifications, and we would have to figure out a way to queue notifications for a polling client.
Websockets solves all these problems. If you need to access Graphene's stateful methods, you need to use Websockets.
-
What is the meaning of
a.b.cnumbers?The first number specifies the space. Space 1 is for protocol objects, 2 is for implementation objects. Protocol space objects can appear on the wire, for example in the binary form of transactions. Implementation space objects cannot appear on the wire and solely exist for implementation purposes, such as optimization or internal bookkeeping.
The second number specifies the type. The type of the object determines what fields it has. For a complete list of type ID's, see
enum object_typeandenum impl_object_typein types.hpp.The third number specifies the instance. The instance of the object is different for each individual object.
-
The answer to the previous question was really confusing. Can you make it clearer?
All account ID's are of the form
1.2.x. If you were the 9735th account to be registered, your account's ID will be1.2.9735. Account0is special (it's the "committee account," which is controlled by the committee members and has a few abilities and restrictions other accounts do not).All asset ID's are of the form
1.3.x. If you were the 29th asset to be registered, your asset's ID will be1.3.29. Asset0is special (it's BTS, which is considered the "core asset").The first and second number together identify the kind of thing you're talking about (
1.2for accounts,1.3for assets). The third number identifies the particular thing. -
How do I get the
network_add_nodescommand to work? Why is it so complicated?You need to follow the instructions in the "Accessing restricted API's" section to allow a username/password access to the
network_nodeAPI. Then you need to pass the username/password to thecli_walleton the command line or in a config file.It's set up this way so that the default configuration is secure even if the RPC port is publicly accessible. It's fine if your
witness_nodeallows the general public to query the database or broadcast transactions (in fact, this is how the hosted web UI works). It's less fine if yourwitness_nodeallows the general public to control which p2p nodes it's connecting to. Therefore the API to add p2p connections needs to be set up with proper access controls.