refined is a Scala library for refining types with type-level predicates which constrain the set of values described by the refined type. It started as a port of the refined Haskell library by Nikita Volkov (which also provides an excellent motivation why this kind of library is useful). The idea of expressing constraints at the type-level as Scala library was first explored by Flavio W. Brasil in bond.
A quick example:
import eu.timepit.refined._
import eu.timepit.refined.api.Refined
import eu.timepit.refined.auto._
import eu.timepit.refined.numeric._
// This refines Int with the Positive predicate and checks via an
// implicit macro that the assigned value satisfies it:
scala> val i1: Int Refined Positive = 5
i1: Int Refined Positive = 5
// If the value does not satisfy the predicate, we get a meaningful
// compile error:
scala> val i2: Int Refined Positive = -5
<console>:22: error: Predicate failed: (-5 > 0).
val i2: Int Refined Positive = -5
^
// There is also the explicit refineMV macro that can infer the base
// type from its parameter:
scala> refineMV[Positive](5)
res0: Int Refined Positive = 5
// Macros can only validate literals because their values are known at
// compile-time. To validate arbitrary (runtime) values we can use the
// refineV function:
scala> val x = 42 // suppose the value of x is not known at compile-time
scala> refineV[Positive](x)
res1: Either[String, Int Refined Positive] = Right(42)
scala> refineV[Positive](-x)
res2: Either[String, Int Refined Positive] = Left(Predicate failed: (-42 > 0).)refined also contains inference rules for converting between different
refined types. For example, Int Refined Greater[10] can be safely
converted to Int Refined Positive because all integers greater than ten
are also positive. The type conversion of refined types is a compile-time
operation that is provided by the library:
scala> val a: Int Refined Greater[5] = 10
a: Int Refined Greater[Int(5)] = 10
// Since every value greater than 5 is also greater than 4, `a` can be
// ascribed the type Int Refined Greater[4]:
scala> val b: Int Refined Greater[4] = a
b: Int Refined Greater[Int(4)] = 10
// An unsound ascription leads to a compile error:
scala> val c: Int Refined Greater[6] = a
^
error: type mismatch (invalid inference):
eu.timepit.refined.numeric.Greater[5] does not imply
eu.timepit.refined.numeric.Greater[6]This mechanism allows to pass values of more specific types (e.g.
Int Refined Greater[10]) to functions that take a more general
type (e.g. Int Refined Positive) without manual intervention.
Since there are no literal types prior to Scala 2.13 the literals must be created with shapeless:
scala> val a: Int Refined Greater[W.`5`.T] = 10
a: Int Refined Greater[Int(5)] = 10
scala> val b: Int Refined Greater[W.`4`.T] = a
b: Int Refined Greater[Int(4)] = 10Note that W
is a shortcut for shapeless.Witness which provides
syntax for literal-based singleton types.
- More examples
- Using refined
- Community
- Documentation
- Provided predicates
- Contributors and participation
- Related projects
- License
import eu.timepit.refined._
import eu.timepit.refined.auto._
import eu.timepit.refined.numeric._
import eu.timepit.refined.api.{RefType, Refined}
import eu.timepit.refined.boolean._
import eu.timepit.refined.char._
import eu.timepit.refined.collection._
import eu.timepit.refined.generic._
import eu.timepit.refined.string._
import shapeless.{ ::, HNil }
scala> refineMV[NonEmpty]("Hello")
res2: String Refined NonEmpty = Hello
scala> refineMV[NonEmpty]("")
<console>:39: error: Predicate isEmpty() did not fail.
refineMV[NonEmpty]("")
^
scala> type ZeroToOne = Not[Less[0.0]] And Not[Greater[1.0]]
defined type alias ZeroToOne
scala> refineMV[ZeroToOne](1.8)
<console>:40: error: Right predicate of (!(1.8 < 0.0) && !(1.8 > 1.0)) failed: Predicate (1.8 > 1.0) did not fail.
refineMV[ZeroToOne](1.8)
^
scala> refineMV[AnyOf[Digit :: Letter :: Whitespace :: HNil]]('F')
res3: Char Refined AnyOf[Digit :: Letter :: Whitespace :: HNil] = F
scala> refineMV[MatchesRegex["[0-9]+"]]("123.")
<console>:39: error: Predicate failed: "123.".matches("[0-9]+").
refineMV[MatchesRegex[W.`"[0-9]+"`.T]]("123.")
^
scala> val d1: Char Refined Equal['3'] = '3'
d1: Char Refined Equal[Char('3')] = 3
scala> val d2: Char Refined Digit = d1
d2: Char Refined Digit = 3
scala> val d3: Char Refined Letter = d1
<console>:39: error: type mismatch (invalid inference):
Equal[Char('3')] does not imply
Letter
val d3: Char Refined Letter = d1
^
scala> val r1: String Refined Regex = "(a|b)"
r1: String Refined Regex = (a|b)
scala> val r2: String Refined Regex = "(a|b"
<console>:38: error: Regex predicate failed: Unclosed group near index 4
(a|b
^
val r2: String Refined Regex = "(a|b"
^
scala> val u1: String Refined Url = "htp://example.com"
<console>:38: error: Url predicate failed: unknown protocol: htp
val u1: String Refined Url = "htp://example.com"
^
// Here we define a refined type "Int with the predicate (7 <= value < 77)".
scala> type Age = Int Refined Interval.ClosedOpen[7, 77]
scala> val userInput = 55
// We can refine values with this refined type by either using `refineV`
// with an explicit return type
scala> val ageEither1: Either[String, Age] = refineV(userInput)
ageEither1: Either[String,Age] = Right(55)
// or by using `RefType.applyRef` with the refined type as type parameter.
scala> val ageEither2 = RefType.applyRef[Age](userInput)
ageEither2: Either[String,Age] = Right(55)The latest version of the library is 0.11.3, which is available for Scala and Scala.js version 2.12 and 2.13.
If you're using sbt, add the following to your build:
libraryDependencies ++= Seq(
"eu.timepit" %% "refined" % "0.11.3",
"eu.timepit" %% "refined-cats" % "0.11.3", // optional
"eu.timepit" %% "refined-eval" % "0.11.3", // optional, JVM-only
"eu.timepit" %% "refined-jsonpath" % "0.11.3", // optional, JVM-only
"eu.timepit" %% "refined-pureconfig" % "0.11.3", // optional, JVM-only
"eu.timepit" %% "refined-scalacheck" % "0.11.3", // optional
"eu.timepit" %% "refined-scalaz" % "0.11.3", // optional
"eu.timepit" %% "refined-scodec" % "0.11.3", // optional
"eu.timepit" %% "refined-scopt" % "0.11.3", // optional
"eu.timepit" %% "refined-shapeless" % "0.11.3" // optional
)For Scala.js just replace %% with %%% above.
Instructions for Maven and other build tools are available at search.maven.org.
Release notes for the latest version are here.
The project provides these optional extensions and library integrations:
refined-catsprovides Cats type class instances for refined typesrefined-evalprovides theEval[S]predicate that checks if a value applied to the predicateSyieldstruerefined-jsonpathprovides theJSONPathpredicate that checks if aStringis a valid JSONPathrefined-pureconfigallows to read configuration with refined types using PureConfigrefined-scalacheckallows to generate arbitrary values of refined types with ScalaCheck. Userefined-scalacheck_1.13instead if your other dependencies use scalacheck version 1.13refined-scalazprovides Scalaz type class instances for refined types and support forscalaz.@@refined-scodecallows binary decoding and encoding of refined types with scodec and allows refiningscodec.bits.ByteVectorrefined-scoptallows to read command line options with refined types using scoptrefined-shapeless
Below is an incomplete list of third-party extensions and library integrations for refined. If your library is missing, please open a pull request to list it here:
- api-refiner
- argonaut-refined
- atto-refined
- case-app-refined
- circe-refined
- ciris-refined
- cormorant-refined
- coulomb-refined
- decline-refined
- doobie-refined
- exercises-refined
- extruder-refined
- finch-refined
- formulation-refined
- kantan.csv-refined
- kantan.regex-refined
- kantan.xpath-refined
- monocle-refined
- neotypes-refined
- play-refined
- play-json-refined
- play-json-refined
- refined-anorm
- refined-guava
- scanamo-refined
- seals-refined
- slick-refined
- spray-json-refined
- strictify-refined
- validated-config
- vulcan-refined
- xml-names-core
If your open source project is using refined, please consider opening a pull request to list it here:
- calypso: BSON library for Scala
- Quasar: An open source NoSQL analytics engine which uses refined for natural and positive integer types
- rvi_sota_server: The SOTA Server Reference Implementation uses refined for domain specific types. like the vehicle identification number (VIN).
Are you using refined in your organization or company? Please consider opening a pull request to list it here:
- PITS Global Data Recovery Services
- AutoScout24
- Besedo
- Chatroulette
- Colisweb
- FOLIO
- HolidayCheck
- Zalando
- ContentSquare
- Dassault Systèmes
- Hypefactors
API documentation of the latest release is available at: https://static.javadoc.io/eu.timepit/refined_2.12/0.11.3/eu/timepit/refined/index.html
There are further (type-checked) examples in the docs
directory including ones for defining custom predicates
and working with type aliases. It also contains a
description of refined's design and internals.
Talks and other external resources are listed on the Resources page in the wiki.
The library comes with these predefined predicates:
True: constant predicate that is alwaystrueFalse: constant predicate that is alwaysfalseNot[P]: negation of the predicatePAnd[A, B]: conjunction of the predicatesAandBOr[A, B]: disjunction of the predicatesAandBXor[A, B]: exclusive disjunction of the predicatesAandBNand[A, B]: negated conjunction of the predicatesAandBNor[A, B]: negated disjunction of the predicatesAandBAllOf[PS]: conjunction of all predicates inPSAnyOf[PS]: disjunction of all predicates inPSOneOf[PS]: exclusive disjunction of all predicates inPS
Digit: checks if aCharis a digitLetter: checks if aCharis a letterLetterOrDigit: checks if aCharis a letter or digitLowerCase: checks if aCharis a lower case characterUpperCase: checks if aCharis an upper case characterWhitespace: checks if aCharis white space
Contains[U]: checks if anIterablecontains a value equal toUCount[PA, PC]: counts the number of elements in anIterablewhich satisfy the predicatePAand passes the result to the predicatePCEmpty: checks if anIterableis emptyNonEmpty: checks if anIterableis not emptyForall[P]: checks if the predicatePholds for all elements of anIterableExists[P]: checks if the predicatePholds for some elements of anIterableHead[P]: checks if the predicatePholds for the first element of anIterableIndex[N, P]: checks if the predicatePholds for the element at indexNof a sequenceInit[P]: checks if the predicatePholds for all but the last element of anIterableLast[P]: checks if the predicatePholds for the last element of anIterableTail[P]: checks if the predicatePholds for all but the first element of anIterableSize[P]: checks if the size of anIterablesatisfies the predicatePMinSize[N]: checks if the size of anIterableis greater than or equal toNMaxSize[N]: checks if the size of anIterableis less than or equal toN
Equal[U]: checks if a value is equal toU
Less[N]: checks if a numeric value is less thanNLessEqual[N]: checks if a numeric value is less than or equal toNGreater[N]: checks if a numeric value is greater thanNGreaterEqual[N]: checks if a numeric value is greater than or equal toNPositive: checks if a numeric value is greater than zeroNonPositive: checks if a numeric value is zero or negativeNegative: checks if a numeric value is less than zeroNonNegative: checks if a numeric value is zero or positiveInterval.Open[L, H]: checks if a numeric value is in the interval (L,H)Interval.OpenClosed[L, H]: checks if a numeric value is in the interval (L,H]Interval.ClosedOpen[L, H]: checks if a numeric value is in the interval [L,H)Interval.Closed[L, H]: checks if a numeric value is in the interval [L,H]Modulo[N, O]: checks if an integral value moduloNisODivisible[N]: checks if an integral value is evenly divisible byNNonDivisible[N]: checks if an integral value is not evenly divisible byNEven: checks if an integral value is evenly divisible by 2Odd: checks if an integral value is not evenly divisible by 2NonNaN: checks if a floating-point number is not NaN
EndsWith[S]: checks if aStringends with the suffixSIPv4: checks if aStringis a valid IPv4IPv6: checks if aStringis a valid IPv6MatchesRegex[S]: checks if aStringmatches the regular expressionSRegex: checks if aStringis a valid regular expressionStartsWith[S]: checks if aStringstarts with the prefixSUri: checks if aStringis a valid URIUrl: checks if aStringis a valid URLUuid: checks if aStringis a valid UUIDValidByte: checks if aStringis a parsableByteValidShort: checks if aStringis a parsableShortValidInt: checks if aStringis a parsableIntValidLong: checks if aStringis a parsableLongValidFloat: checks if aStringis a parsableFloatValidDouble: checks if aStringis a parsableDoubleValidBigInt: checks if aStringis a parsableBigIntValidBigDecimal: checks if aStringis a parsableBigDecimalXml: checks if aStringis well-formed XMLXPath: checks if aStringis a valid XPath expressionTrimmed: checks if aStringhas no leading or trailing whitespaceHexStringSpec: checks if aStringrepresents a hexadecimal number
The following people have helped making refined great:
- Alex
- Alexandre Archambault
- Arman Bilge
- Brian P. Holt
- Chris Birchall
- Chris Hodapp
- Cody Allen
- Dale Wijnand
- Denys Shabalin
- Derek Morr
- Didac
- Diogo Castro
- dm-tran
- Ender Tunç
- Frank S. Thomas
- Frederick Roth
- Howard Perrin
- Iurii Susuk
- Ivan Klass
- Jean-Rémi Desjardins
- Jente Hidskes
- Joe Greene
- John-Michael Reed
- Julien BENOIT
- kalejami
- kenji yoshida
- kusamakura
- 急須
- Leif Wickland
- Luis Miguel Mejía Suárez
- Mateusz Wójcik
- Matt Pickering
- Matthieu Jacquot
- Michael Thomas
- Michal Sitko
- Naoki Aoyama
- Nicolas Rinaudo
- Olli Helenius
- Richard Gomes
- ronanM
- Sam Guymer
- Sam Halliday
- Shawn Garner
- Shohei Shimomura
- Shunsuke Otani
- Tim Steinbach
- Torsten Scholak
- Viktor Lövgren
- Vladimir Koshelev
- Yuki Ishikawa
- Zainab Ali
- Your name here :-)
refined is a Typelevel project. This means we embrace pure, typeful, functional programming, and provide a safe and friendly environment for teaching, learning, and contributing as described in the Scala Code of Conduct.
- SMT-Based Checking of Predicate-Qualified Types for Scala
- bond: Type-level validation for Scala
- F7: Refinement Types for F#
- LiquidHaskell: Refinement Types via SMT and Predicate Abstraction
- Refinement Types in Typed Racket
- refined: Refinement types with static and runtime checking for Haskell. refined was inspired by this library and even stole its name!
- refscript: Refinement Types for TypeScript
- Subtypes in Perl 6
refined is licensed under the MIT license, available at http://opensource.org/licenses/MIT and also in the LICENSE file.