Thanks to visit codestin.com
Credit goes to github.com

Skip to content

http://www.neuracore.tech/ Professional AI-powered investment research platform with multi-agent analysis system. Delivers institutional-grade equity research reports.

fenil210/IntelliMarket

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

21 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ“Š IntelliMarket Research Platform

HOSTED HERE : http://www.neuracore.tech/

β–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ•—   β–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ•—     β–ˆβ–ˆβ•—     β–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ•—   β–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ•—  β–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—
β–ˆβ–ˆβ•‘β–ˆβ–ˆβ–ˆβ–ˆβ•—  β–ˆβ–ˆβ•‘β•šβ•β•β–ˆβ–ˆβ•”β•β•β•β–ˆβ–ˆβ•”β•β•β•β•β•β–ˆβ–ˆβ•‘     β–ˆβ–ˆβ•‘     β–ˆβ–ˆβ•‘β–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•”β•β–ˆβ–ˆβ•”β•β•β•β•β•β•šβ•β•β–ˆβ–ˆβ•”β•β•β•
β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β–ˆβ–ˆβ•— β–ˆβ–ˆβ•‘   β–ˆβ–ˆβ•‘   β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—  β–ˆβ–ˆβ•‘     β–ˆβ–ˆβ•‘     β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β–ˆβ–ˆβ–ˆβ–ˆβ•”β–ˆβ–ˆβ•‘β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•‘β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•”β•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•”β• β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—     β–ˆβ–ˆβ•‘   
β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘β•šβ–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘   β–ˆβ–ˆβ•‘   β–ˆβ–ˆβ•”β•β•β•  β–ˆβ–ˆβ•‘     β–ˆβ–ˆβ•‘     β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘β•šβ–ˆβ–ˆβ•”β•β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•”β•β–ˆβ–ˆβ•— β–ˆβ–ˆβ•”β•β•β•     β–ˆβ–ˆβ•‘   
β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘ β•šβ–ˆβ–ˆβ–ˆβ–ˆβ•‘   β–ˆβ–ˆβ•‘   β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘ β•šβ•β• β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘  β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘  β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘  β–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—   β–ˆβ–ˆβ•‘   
β•šβ•β•β•šβ•β•  β•šβ•β•β•β•   β•šβ•β•   β•šβ•β•β•β•β•β•β•β•šβ•β•β•β•β•β•β•β•šβ•β•β•β•β•β•β•β•šβ•β•β•šβ•β•     β•šβ•β•β•šβ•β•  β•šβ•β•β•šβ•β•  β•šβ•β•β•šβ•β•  β•šβ•β•β•šβ•β•β•β•β•β•β•   β•šβ•β•   

AI-Powered Investment Analysis & Market Research Platform

Professional-grade multi-agent system for institutional investment analysis

Python Framework AI Model License PRs Welcome

Features β€’ Quick Start β€’ Architecture β€’ Documentation β€’ Contributing

🌟 Overview

IntelliMarket is an enterprise-grade investment research platform that leverages multiple AI agents to provide comprehensive financial analysis. Built with the AGNO framework and powered by Google's Gemini AI, it delivers institutional-quality research reports comparable to Goldman Sachs and Morgan Stanley.

🎯 Key Highlights

  • πŸ€– Multi-Agent Architecture: 5 specialized AI agents working in coordination
  • πŸ“ˆ Real-Time Data: Live market data via YFinance and web research via DuckDuckGo
  • πŸ’Ό Institutional Quality: CFA/CMT-level analysis with professional report formatting
  • ⚑ High Performance: ~10,000x faster than LangGraph with minimal memory footprint
  • 🌐 Full-Stack Solution: REST API backend with professional web frontend
  • πŸ“Š Beautiful UI: Investment-grade interface with interactive charts and tables
  • πŸ“„ PDF Reports: Professional PDF generation with financial styling and institutional formatting

✨ Features

πŸ” Single Stock Analysis

  • Comprehensive financial metrics analysis (P/E, ROE, debt ratios)
  • Technical analysis with RSI, MACD, moving averages
  • Real-time news sentiment analysis
  • Competitive landscape assessment
  • Investment recommendations with price targets

βš–οΈ Stock Comparison

  • Side-by-side analysis of multiple stocks
  • Relative valuation and performance metrics
  • Competitive positioning analysis
  • Investment ranking with rationale

🌐 Market Research

  • Topic-based market sentiment analysis
  • Industry trend identification
  • Related stock discovery and analysis
  • News impact assessment

🧠 Custom Query Processing

  • Natural language investment questions
  • Intelligent agent routing based on query content
  • Contextual analysis with multiple perspectives

πŸ“Š Professional Reporting

  • Institutional-grade report generation
  • Interactive data tables and visualizations
  • Professional PDF Reports: High-quality PDF downloads with financial styling, proper typography, and institutional formatting
  • Real-time progress tracking

πŸ—οΈ Architecture

System Overview

graph TB
    subgraph "Frontend Layer"
        UI[Web Interface<br/>HTML/CSS/JS]
        API_CLIENT[API Client<br/>JavaScript]
    end
  
    subgraph "Backend Layer"
        FLASK[Flask API Server<br/>REST Endpoints]
        WORKFLOWS[Workflow Engine<br/>Agent Coordination]
        PDF[PDF Generator<br/>ReportLab Engine]
    end
  
    subgraph "AI Agent Layer"
        FA[Financial Agent<br/>CFA-Level Analysis]
        TA[Technical Agent<br/>CMT Analysis]
        RA[Research Agent<br/>News & Sentiment]
        CA[Competitive Agent<br/>Strategic Analysis]
        REP[Report Agent<br/>Synthesis & Formatting]
    end
  
    subgraph "Data Layer"
        YF[YFinance<br/>Market Data]
        DDG[DuckDuckGo<br/>Web Research]
        GEMINI[Gemini AI<br/>LLM Processing]
    end
  
    UI --> API_CLIENT
    API_CLIENT --> FLASK
    FLASK --> WORKFLOWS
    FLASK --> PDF
    WORKFLOWS --> FA
    WORKFLOWS --> TA
    WORKFLOWS --> RA
    WORKFLOWS --> CA
    WORKFLOWS --> REP
    FA --> YF
    TA --> YF
    RA --> DDG
    CA --> YF
    REP --> GEMINI
    FA --> GEMINI
    TA --> GEMINI
    RA --> GEMINI
    CA --> GEMINI
Loading

Multi-Agent Workflow

sequenceDiagram
    participant User
    participant API
    participant Workflow
    participant FA as Financial Agent
    participant TA as Technical Agent
    participant RA as Research Agent
    participant CA as Competitive Agent
    participant REP as Report Agent
  
    User->>API: Request Stock Analysis
    API->>Workflow: Initialize Analysis
  
    par Parallel Analysis
        Workflow->>FA: Analyze Financials
        Workflow->>TA: Technical Analysis
        Workflow->>RA: News Research
        Workflow->>CA: Competitive Analysis
    end
  
    FA-->>Workflow: Financial Metrics
    TA-->>Workflow: Technical Indicators
    RA-->>Workflow: Market Sentiment
    CA-->>Workflow: Competitive Position
  
    Workflow->>REP: Synthesize Report
    REP-->>Workflow: Final Report
    Workflow-->>API: Complete Analysis
    API-->>User: Investment Report
Loading

πŸš€ Quick Start

Prerequisites

  • Python 3.8+
  • Google Gemini API Key (Get it here)
  • Internet connection for real-time data

Installation

  1. Clone the repository

    git clone https://github.com/fenil210/intelligmarket.git
    cd intelligmarket
  2. Set up virtual environment

    python -m venv venv
    
    # Windows
    venv\Scripts\activate
    
    # macOS/Linux
    source venv/bin/activate
  3. Install dependencies

    pip install -r backend/requirements.txt
  4. Configure environment

    # Copy environment template
    cp .env.example .env
    
    # Edit .env file and add your Gemini API key
    GOOGLE_API_KEY=your_gemini_api_key_here

Running the Application

  1. Start the backend server

    python run.py

    Backend will be available at http://127.0.0.1:5000

  2. Start the frontend server (in a new terminal)

    cd frontend
    python -m http.server 8080

    Frontend will be available at http://localhost:8080

  3. Access the application

    Open your browser and navigate to http://localhost:8080

πŸ“– Documentation

API Endpoints

Endpoint Method Description
/health GET Health check
/api/system/info GET System information
/api/analyze/stock POST Single stock analysis
/api/analyze/comparison POST Stock comparison
/api/analyze/research POST Market research
/api/analyze/query POST Custom query processing
/api/download/pdf POST Generate PDF report
/api/validate/symbol/{symbol} GET Stock symbol validation

Request Examples

Single Stock Analysis

curl -X POST http://127.0.0.1:5000/api/analyze/stock \
  -H "Content-Type: application/json" \
  -d '{
    "symbol": "AAPL",
    "type": "comprehensive"
  }'

Stock Comparison

curl -X POST http://127.0.0.1:5000/api/analyze/comparison \
  -H "Content-Type: application/json" \
  -d '{
    "symbols": ["AAPL", "MSFT", "GOOGL"]
  }'

Market Research

curl -X POST http://127.0.0.1:5000/api/analyze/research \
  -H "Content-Type: application/json" \
  -d '{
    "topic": "AI stocks 2024"
  }'

PDF Report Generation

curl -X POST http://127.0.0.1:5000/api/download/pdf \
  -H "Content-Type: application/json" \
  -d '{
    "content": {...},
    "title": "AAPL Analysis Report"
  }' \
  --output report.pdf

Configuration

Environment Variables

Variable Description Default
GOOGLE_API_KEY Gemini AI API key Required
FLASK_DEBUG Enable debug mode true
FLASK_HOST Server host 127.0.0.1
FLASK_PORT Server port 5000
LOG_LEVEL Logging level INFO
AGNO_TELEMETRY Enable AGNO telemetry false

Agent Configuration

Agents can be customized by modifying their instructions in backend/agents.py:

  • Financial Agent: CFA-level financial analysis
  • Technical Agent: CMT-level technical analysis
  • Research Agent: Market research and sentiment analysis
  • Competitive Agent: Strategic competitive analysis
  • Report Agent: Professional report synthesis

πŸ› οΈ Development

Project Structure

intelligmarket/
β”œβ”€β”€ backend/                 # Backend API server
β”‚   β”œβ”€β”€ app.py              # Flask application factory
β”‚   β”œβ”€β”€ config.py           # Configuration management
β”‚   β”œβ”€β”€ agents.py           # AI agent definitions
β”‚   β”œβ”€β”€ tools.py            # Agent tools and utilities
β”‚   β”œβ”€β”€ workflows.py        # Multi-agent workflows
β”‚   β”œβ”€β”€ requirements.txt    # Python dependencies
β”‚   └── api/
β”‚       β”œβ”€β”€ __init__.py
β”‚       └── routes.py       # REST API endpoints
β”œβ”€β”€ frontend/               # Frontend web application
β”‚   β”œβ”€β”€ index.html         # Main HTML file
β”‚   β”œβ”€β”€ css/
β”‚   β”‚   └── styles.css     # Professional styling
β”‚   └── js/
β”‚       β”œβ”€β”€ api.js         # API communication
β”‚       └── main.js        # Application logic
β”œβ”€β”€ .env                   # Environment variables
β”œβ”€β”€ run.py                 # Application runner
└── README.md              # This file

Adding New Tools

  1. Create tool class in backend/tools.py:

    class CustomTool(Toolkit):
        def custom_function(self, parameter: str) -> Dict[str, Any]:
            # Your tool logic here
            return {"result": "data"}
  2. Add tool to relevant agent in backend/agents.py:

    tools=[FinancialDataTool(), CustomTool()]

Adding New Agents

  1. Create agent class in backend/agents.py:

    class CustomAgent:
        def __init__(self):
            self.agent = Agent(
                name="Custom Agent",
                model=Gemini(id=Config.GEMINI_MODEL),
                tools=[CustomTool()],
                instructions=["Custom instructions"]
            )
  2. Add to AgentFactory.create_all_agents() method

Testing

# Backend health check
curl http://127.0.0.1:5000/health

# Test single stock analysis
curl -X POST http://127.0.0.1:5000/api/analyze/stock \
  -H "Content-Type: application/json" \
  -d '{"symbol": "AAPL", "type": "quick"}'

πŸš€ Deployment

Production Configuration

  1. Environment Variables

    FLASK_DEBUG=false
    SECRET_KEY=your-secure-secret-key
    CORS_ORIGINS=https://yourdomain.com
    LOG_LEVEL=WARNING
  2. Backend Deployment

    # Using Gunicorn
    pip install gunicorn
    gunicorn -w 4 -b 0.0.0.0:5000 "backend.app:create_app()"
  3. Frontend Deployment

    • Serve frontend/ directory via nginx, Apache, or static hosting
    • Update API base URL in frontend/js/api.js

Docker Deployment

# Dockerfile
FROM python:3.9-slim

WORKDIR /app
COPY backend/requirements.txt .
RUN pip install -r requirements.txt

COPY . .
EXPOSE 5000

CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:5000", "backend.app:create_app()"]
# Build and run
docker build -t intelligmarket .
docker run -p 5000:5000 -e GOOGLE_API_KEY=your_key intelligmarket

πŸ”§ Performance

Benchmarks

Framework Agent Creation Memory Usage Analysis Time
IntelliMarket (AGNO) ~2ΞΌs ~3.75KB 30-120s
LangGraph ~20ms ~187KB 60-300s
LangChain ~15ms ~156KB 90-400s

Optimization Tips

  • Use "Quick Analysis" for faster results (30-60 seconds)
  • Comprehensive analysis provides detailed insights (2-5 minutes)
  • Cache results for repeated queries
  • Monitor API usage to optimize costs
  • PDF Generation: Optimized for institutional-quality reports with professional formatting

🀝 Contributing

We welcome contributions! Please see our Contributing Guidelines for details.

Development Setup

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Make your changes
  4. Add tests if applicable
  5. Commit your changes: git commit -m 'Add amazing feature'
  6. Push to the branch: git push origin feature/amazing-feature
  7. Open a Pull Request

Code Style

  • Follow PEP 8 for Python code
  • Use type hints where applicable
  • Add docstrings for public methods
  • Keep functions focused and small
  • Use meaningful variable names

πŸ“„ License

This project is licensed under the MIT License.

πŸ™ Acknowledgments

  • AGNO Framework: High-performance multi-agent system foundation
  • Google Gemini: Advanced AI capabilities for analysis
  • YFinance: Real-time financial data access
  • DuckDuckGo: Privacy-focused web search capabilities
  • ReportLab: Professional PDF generation for institutional reports

πŸ“ž Support

⭐ Star this repository if you find it useful!

Made with ❀️ by the Fenil Ramoliya for investment geeks

About

http://www.neuracore.tech/ Professional AI-powered investment research platform with multi-agent analysis system. Delivers institutional-grade equity research reports.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published