HOSTED HERE : http://www.neuracore.tech/
βββββββ βββββββββββββββββββββββ βββ βββββββ ββββ ββββββ βββββββ βββ ββββββββββββββββββββ
ββββββββ βββββββββββββββββββββββ βββ ββββββββ ββββββββββββββββββββββββ βββββββββββββββββββββ
βββββββββ βββ βββ ββββββ βββ βββ βββββββββββββββββββββββββββββββββββββ ββββββ βββ
βββββββββββββ βββ ββββββ βββ βββ βββββββββββββββββββββββββββββββββββββ ββββββ βββ
ββββββ ββββββ βββ ββββββββββββββββββββββββββββββ βββ ββββββ ββββββ ββββββ βββββββββββ βββ
ββββββ βββββ βββ ββββββββββββββββββββββββββββββ ββββββ ββββββ ββββββ βββββββββββ βββ
AI-Powered Investment Analysis & Market Research Platform
Professional-grade multi-agent system for institutional investment analysis
Features β’ Quick Start β’ Architecture β’ Documentation β’ Contributing
IntelliMarket is an enterprise-grade investment research platform that leverages multiple AI agents to provide comprehensive financial analysis. Built with the AGNO framework and powered by Google's Gemini AI, it delivers institutional-quality research reports comparable to Goldman Sachs and Morgan Stanley.
- π€ Multi-Agent Architecture: 5 specialized AI agents working in coordination
- π Real-Time Data: Live market data via YFinance and web research via DuckDuckGo
- πΌ Institutional Quality: CFA/CMT-level analysis with professional report formatting
- β‘ High Performance: ~10,000x faster than LangGraph with minimal memory footprint
- π Full-Stack Solution: REST API backend with professional web frontend
- π Beautiful UI: Investment-grade interface with interactive charts and tables
- π PDF Reports: Professional PDF generation with financial styling and institutional formatting
- Comprehensive financial metrics analysis (P/E, ROE, debt ratios)
- Technical analysis with RSI, MACD, moving averages
- Real-time news sentiment analysis
- Competitive landscape assessment
- Investment recommendations with price targets
- Side-by-side analysis of multiple stocks
- Relative valuation and performance metrics
- Competitive positioning analysis
- Investment ranking with rationale
- Topic-based market sentiment analysis
- Industry trend identification
- Related stock discovery and analysis
- News impact assessment
- Natural language investment questions
- Intelligent agent routing based on query content
- Contextual analysis with multiple perspectives
- Institutional-grade report generation
- Interactive data tables and visualizations
- Professional PDF Reports: High-quality PDF downloads with financial styling, proper typography, and institutional formatting
- Real-time progress tracking
graph TB
subgraph "Frontend Layer"
UI[Web Interface<br/>HTML/CSS/JS]
API_CLIENT[API Client<br/>JavaScript]
end
subgraph "Backend Layer"
FLASK[Flask API Server<br/>REST Endpoints]
WORKFLOWS[Workflow Engine<br/>Agent Coordination]
PDF[PDF Generator<br/>ReportLab Engine]
end
subgraph "AI Agent Layer"
FA[Financial Agent<br/>CFA-Level Analysis]
TA[Technical Agent<br/>CMT Analysis]
RA[Research Agent<br/>News & Sentiment]
CA[Competitive Agent<br/>Strategic Analysis]
REP[Report Agent<br/>Synthesis & Formatting]
end
subgraph "Data Layer"
YF[YFinance<br/>Market Data]
DDG[DuckDuckGo<br/>Web Research]
GEMINI[Gemini AI<br/>LLM Processing]
end
UI --> API_CLIENT
API_CLIENT --> FLASK
FLASK --> WORKFLOWS
FLASK --> PDF
WORKFLOWS --> FA
WORKFLOWS --> TA
WORKFLOWS --> RA
WORKFLOWS --> CA
WORKFLOWS --> REP
FA --> YF
TA --> YF
RA --> DDG
CA --> YF
REP --> GEMINI
FA --> GEMINI
TA --> GEMINI
RA --> GEMINI
CA --> GEMINI
sequenceDiagram
participant User
participant API
participant Workflow
participant FA as Financial Agent
participant TA as Technical Agent
participant RA as Research Agent
participant CA as Competitive Agent
participant REP as Report Agent
User->>API: Request Stock Analysis
API->>Workflow: Initialize Analysis
par Parallel Analysis
Workflow->>FA: Analyze Financials
Workflow->>TA: Technical Analysis
Workflow->>RA: News Research
Workflow->>CA: Competitive Analysis
end
FA-->>Workflow: Financial Metrics
TA-->>Workflow: Technical Indicators
RA-->>Workflow: Market Sentiment
CA-->>Workflow: Competitive Position
Workflow->>REP: Synthesize Report
REP-->>Workflow: Final Report
Workflow-->>API: Complete Analysis
API-->>User: Investment Report
- Python 3.8+
- Google Gemini API Key (Get it here)
- Internet connection for real-time data
-
Clone the repository
git clone https://github.com/fenil210/intelligmarket.git cd intelligmarket -
Set up virtual environment
python -m venv venv # Windows venv\Scripts\activate # macOS/Linux source venv/bin/activate
-
Install dependencies
pip install -r backend/requirements.txt
-
Configure environment
# Copy environment template cp .env.example .env # Edit .env file and add your Gemini API key GOOGLE_API_KEY=your_gemini_api_key_here
-
Start the backend server
python run.py
Backend will be available at
http://127.0.0.1:5000 -
Start the frontend server (in a new terminal)
cd frontend python -m http.server 8080Frontend will be available at
http://localhost:8080 -
Access the application
Open your browser and navigate to
http://localhost:8080
| Endpoint | Method | Description |
|---|---|---|
/health |
GET | Health check |
/api/system/info |
GET | System information |
/api/analyze/stock |
POST | Single stock analysis |
/api/analyze/comparison |
POST | Stock comparison |
/api/analyze/research |
POST | Market research |
/api/analyze/query |
POST | Custom query processing |
/api/download/pdf |
POST | Generate PDF report |
/api/validate/symbol/{symbol} |
GET | Stock symbol validation |
curl -X POST http://127.0.0.1:5000/api/analyze/stock \
-H "Content-Type: application/json" \
-d '{
"symbol": "AAPL",
"type": "comprehensive"
}'curl -X POST http://127.0.0.1:5000/api/analyze/comparison \
-H "Content-Type: application/json" \
-d '{
"symbols": ["AAPL", "MSFT", "GOOGL"]
}'curl -X POST http://127.0.0.1:5000/api/analyze/research \
-H "Content-Type: application/json" \
-d '{
"topic": "AI stocks 2024"
}'curl -X POST http://127.0.0.1:5000/api/download/pdf \
-H "Content-Type: application/json" \
-d '{
"content": {...},
"title": "AAPL Analysis Report"
}' \
--output report.pdf| Variable | Description | Default |
|---|---|---|
GOOGLE_API_KEY |
Gemini AI API key | Required |
FLASK_DEBUG |
Enable debug mode | true |
FLASK_HOST |
Server host | 127.0.0.1 |
FLASK_PORT |
Server port | 5000 |
LOG_LEVEL |
Logging level | INFO |
AGNO_TELEMETRY |
Enable AGNO telemetry | false |
Agents can be customized by modifying their instructions in backend/agents.py:
- Financial Agent: CFA-level financial analysis
- Technical Agent: CMT-level technical analysis
- Research Agent: Market research and sentiment analysis
- Competitive Agent: Strategic competitive analysis
- Report Agent: Professional report synthesis
intelligmarket/
βββ backend/ # Backend API server
β βββ app.py # Flask application factory
β βββ config.py # Configuration management
β βββ agents.py # AI agent definitions
β βββ tools.py # Agent tools and utilities
β βββ workflows.py # Multi-agent workflows
β βββ requirements.txt # Python dependencies
β βββ api/
β βββ __init__.py
β βββ routes.py # REST API endpoints
βββ frontend/ # Frontend web application
β βββ index.html # Main HTML file
β βββ css/
β β βββ styles.css # Professional styling
β βββ js/
β βββ api.js # API communication
β βββ main.js # Application logic
βββ .env # Environment variables
βββ run.py # Application runner
βββ README.md # This file
-
Create tool class in
backend/tools.py:class CustomTool(Toolkit): def custom_function(self, parameter: str) -> Dict[str, Any]: # Your tool logic here return {"result": "data"}
-
Add tool to relevant agent in
backend/agents.py:tools=[FinancialDataTool(), CustomTool()]
-
Create agent class in
backend/agents.py:class CustomAgent: def __init__(self): self.agent = Agent( name="Custom Agent", model=Gemini(id=Config.GEMINI_MODEL), tools=[CustomTool()], instructions=["Custom instructions"] )
-
Add to
AgentFactory.create_all_agents()method
# Backend health check
curl http://127.0.0.1:5000/health
# Test single stock analysis
curl -X POST http://127.0.0.1:5000/api/analyze/stock \
-H "Content-Type: application/json" \
-d '{"symbol": "AAPL", "type": "quick"}'-
Environment Variables
FLASK_DEBUG=false SECRET_KEY=your-secure-secret-key CORS_ORIGINS=https://yourdomain.com LOG_LEVEL=WARNING
-
Backend Deployment
# Using Gunicorn pip install gunicorn gunicorn -w 4 -b 0.0.0.0:5000 "backend.app:create_app()"
-
Frontend Deployment
- Serve
frontend/directory via nginx, Apache, or static hosting - Update API base URL in
frontend/js/api.js
- Serve
# Dockerfile
FROM python:3.9-slim
WORKDIR /app
COPY backend/requirements.txt .
RUN pip install -r requirements.txt
COPY . .
EXPOSE 5000
CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:5000", "backend.app:create_app()"]# Build and run
docker build -t intelligmarket .
docker run -p 5000:5000 -e GOOGLE_API_KEY=your_key intelligmarket| Framework | Agent Creation | Memory Usage | Analysis Time |
|---|---|---|---|
| IntelliMarket (AGNO) | ~2ΞΌs | ~3.75KB | 30-120s |
| LangGraph | ~20ms | ~187KB | 60-300s |
| LangChain | ~15ms | ~156KB | 90-400s |
- Use "Quick Analysis" for faster results (30-60 seconds)
- Comprehensive analysis provides detailed insights (2-5 minutes)
- Cache results for repeated queries
- Monitor API usage to optimize costs
- PDF Generation: Optimized for institutional-quality reports with professional formatting
We welcome contributions! Please see our Contributing Guidelines for details.
- Fork the repository
- Create a feature branch:
git checkout -b feature/amazing-feature - Make your changes
- Add tests if applicable
- Commit your changes:
git commit -m 'Add amazing feature' - Push to the branch:
git push origin feature/amazing-feature - Open a Pull Request
- Follow PEP 8 for Python code
- Use type hints where applicable
- Add docstrings for public methods
- Keep functions focused and small
- Use meaningful variable names
This project is licensed under the MIT License.
- AGNO Framework: High-performance multi-agent system foundation
- Google Gemini: Advanced AI capabilities for analysis
- YFinance: Real-time financial data access
- DuckDuckGo: Privacy-focused web search capabilities
- ReportLab: Professional PDF generation for institutional reports
- Email: [email protected]
β Star this repository if you find it useful!
Made with β€οΈ by the Fenil Ramoliya for investment geeks