The implementation of the paper "Language models enable zero-shot prediction of RNA secondary structure including pseudoknots".
Install PyTorch 1.6+, python 3.7+
- Clone the repo
git clone https://github.com/gongtiansu/RNA-km.git- Install python packages
cd RNA-km
pip install -r requirements.txt- Download pretrained model weight and place the pth file into the weight folder
mkdir weight
mv weight.pth weight - RNA-km.py: extract RNA sequence representation (L * 1024) and attention maps from sequence (fasta format)
python RNA-km.py -i <RNA_fasta> -o <output_dictionary> (--attn) (--cuda)cd example
./run_example.shDistributed under the MIT License. See LICENSE for more information.