This repository provides Mueller Matrix computations for PyTorch featuring the Lu-Chipman decomposition. A reference implementation can be found in the polar_segment repo. Specifically, the infer.py file shows how a mueller matrix model is initialized and the train.py file contains a more elaborate usage for plotting image results.
| Azimuth angle map | Fiber tract map |
@ARTICLE{11202388,
author={Hahne, Christopher and Rodríguez-Núñez, Omar and Gros, Éléa and Lucas, Théotim and Hewer, Ekkehard and Novikova, Tatiana and Maragkou, Theoni and Schucht, Philippe and McKinley, Richard},
journal={IEEE Transactions on Image Processing},
title={Physically Consistent Image Augmentation for Deep Learning in Mueller Matrix Polarimetry},
year={2025},
volume={34},
number={},
pages={6953-6962},
keywords={Imaging;Polarimetry;Deep learning;Data augmentation;Training;Optical polarization;Optical imaging;Vectors;Interpolation;Standards;Augmentation;polarimetry;Mueller matrix;tumor;classification},
doi={10.1109/TIP.2025.3618390}
}
@article{hahne:2025:polar_segment,
author={Christopher Hahne and Ivan Diaz and Omar Rodriguez-Nuñez and Éléa Gros and Muriel Blatter and Théotim Lucas and David Hasler and Tatiana Novikova and Theoni Maragkou and Philippe Schucht and Richard McKinley},
journal={Optics Express},
title={Polarimetric feature analysis of Mueller matrices for brain tumor image segmentation},
year={2025},
volume={33},
number={20},
pages={1-14},
keywords={Mueller matrix polarimetry, brain tumor segmentation, deep learning, medical diagnostics},
doi={https://doi.org/10.1364/OE.561518}
}