Thanks to visit codestin.com
Credit goes to github.com

Skip to content

haolpku/EVQAScore

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

Usage

Prepare

Download VATEX-EVAL dataset in the following link

https://drive.google.com/drive/folders/1jAfZZKEgkMEYFF2x1mhYo39nH-TNeGm6?usp=sharing

Download YOLO model checkpoint yolo11x-seg in the following link

https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt

Download PAC-S++ clip model checkpoint PAC++_clip_ViT-L-14 in the following link

https://ailb-web.ing.unimore.it/publicfiles/pac++/PAC++_clip_ViT-L-14.pth

Download corresponding clip model code following instructions under

https://github.com/aimagelab/pacscore

Compute EVQAScore

First, run extract.py to get keywords of all candidates.

python extract.py

Then, extract video features in parallel by running

python evqascore.py --preprocess --interval 30 --num-chunks 8 --chunk-idx 0 --run-name xxx

Finally, get EVQAScore of vatex-eval dataset by running

python evqascore.py --interval 30 --num-chunks 8 --run-name xxx

The results will store in the result folder as a json file.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages