A Tree-guided CNN for image super-resolution (paper available here)
This paper is conducted by Chunwei Tian, Mingjian Song, Xiaopeng Fan, Xiangtao Zheng, Bob Zhang, David Zhang.
Deep convolutional neural networks can extract more accurate structural information via deep architectures to obtain good performance in image super-resolution. However, a single network architecture is not easy to find effects of key layers to decrease denoising effects. In this paper, we design a tree-guided CNN for image super-resolution (TSRNet). It uses a tree architecture to guide a deep network to enhance effects of key nodes to enhance relation of hierarchical information for improving ability of recovering images. To prevent insufficiency of obtained structural information, cosine transform techniques in the TSRNet used to extract cross-domain information further enhances performance of image super-resolution. Adaptive Nesterov momentum algorithm (Adan) optimizer is used to optimize parameters to improve effectiveness of training a super-resolution model. Extended experiments can verify superiority of the proposed TSRNet for restoring high-quality images.
The training dataset is downloaded at https://data.vision.ee.ethz.ch/cvl/DIV2K/
The test dataset of Set5 is downloaded at 链接:https://pan.baidu.com/s/1YqoDHEb-03f-AhPIpEHDPQ (secret code:atwu) (baiduyun) or https://drive.google.com/file/d/1hlwSX0KSbj-V841eESlttoe9Ew7r-Iih/view?usp=sharing (google drive)
The test dataset of Set14 is downloaded at 链接:https://pan.baidu.com/s/1GnGD9elL0pxakS6XJmj4tA (secret code:vsks) (baiduyun) or https://drive.google.com/file/d/1us_0sLBFxFZe92wzIN-r79QZ9LINrxPf/view?usp=sharing (google drive)
The test dataset of B100 is downloaded at 链接:https://pan.baidu.com/s/1GV99jmj2wrEEAQFHSi8jWw (secret code:fhs2) (baiduyun) or https://drive.google.com/file/d/1G8FCPxPEVzaBcZ6B-w-7Mk8re2WwUZKl/view?usp=sharing (google drive)
The test dataset of Urban100 is downloaded at 链接:https://pan.baidu.com/s/15k55SkO6H6A7zHofgHk9fw (secret code:2hny) (baiduyun) or https://drive.google.com/file/d/1yArL2Wh79Hy2i7_YZ8y5mcdAkFTK5HOU/view?usp=sharing (google drive)
python main.py --model tsrnet --scale 2 --data_test Urban100 --patch_size 128 --save tsrnet --epochs 1200 --batch_size 64 --data_range 1-900 --gclip 10.0
python main.py --model tsrnet --scale 3 --data_test Urban100 --patch_size 128 --save tsrnet --epochs 1200 --batch_size 64 --data_range 1-900 --gclip 10.0
python main.py --model tsrnet --scale 4 --data_test Urban100 --patch_size 128 --save tsrnet --epochs 1200 --batch_size 64 --data_range 1-900 --gclip 10.0
python main.py --model tsrnet --scale 2 --data_test Set14 --pre_train ../experiment/tsrnet_x2/model/model_best.pt --test_only --save_results
python main.py --model tsrnet --scale 3 --data_test Set14 --pre_train ../experiment/tsrnet_x3/model/model_best.pt --test_only --save_results
python main.py --model tsrnet --scale 4 --data_test Set14 --pre_train ../experiment/tsrnet_x4/model/model_best.pt --test_only --save_results
@ARTICLE{11010139,
author={Tian, Chunwei and Song, Mingjian and Fan, Xiaopeng and Zheng, Xiangtao and Zhang, Bob and Zhang, David},
journal={IEEE Transactions on Consumer Electronics},
title={A Tree-Guided CNN for Image Super-Resolution},
year={2025},
volume={},
number={},
pages={1-1},
keywords={Superresolution;Convolutional neural networks;Data mining;Transforms;Training;Interpolation;Electronic mail;Network architecture;Image restoration;Explosions;Deep networks;tree network;cosine transform;Adan optimizer;image super-resolution},
doi={10.1109/TCE.2025.3572732}}