Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Conversation

@pull
Copy link

@pull pull bot commented Apr 12, 2020

See Commits and Changes for more details.


Created by pull[bot]. Want to support this open source service? Please star it : )

They are all supposed to be sorted, but people who add new entries don't
always know the alphabet.  Plus sometimes the entry names get edited,
and people don't then re-order the entry.

Let's see how painful this will be for merging purposes (the MAINTAINERS
file is often edited in various different trees), but Joe claims there's
relatively few patches in -next that touch this, and doing it just
before -rc1 is likely the best time.  Fingers crossed.

This was scripted with

  /scripts/parse-maintainers.pl --input=MAINTAINERS --output=MAINTAINERS

but then I also ended up manually upper-casing a few entry names that
stood out when looking at the end result.

Requested-by: Joe Perches <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
This sorts the actual field names too, potentially causing even more
chaos and confusion at merge time if you have edited the MAINTAINERS
file.  But the end result is a more consistent layout, and hopefully
it's a one-time pain minimized by doing this just before the -rc1
release.

This was entirely scripted:

  ./scripts/parse-maintainers.pl --input=MAINTAINERS --output=MAINTAINERS --order

Requested-by: Joe Perches <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
@pull pull bot added the ⤵️ pull label Apr 12, 2020
@pull pull bot merged commit 8f3d9f3 into ikingye:master Apr 12, 2020
pull bot pushed a commit that referenced this pull request Apr 23, 2020
syzbot reports this crash:

BUG: unable to handle page fault for address: ffffffffffffffe8
PGD f96e17067 P4D f96e17067 PUD f96e19067 PMD 0
Oops: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN PTI
CPU: 55 PID: 211750 Comm: trinity-c127 Tainted: G    B        L    5.7.0-rc1-next-20200413 #4
Hardware name: HP ProLiant DL380 Gen9/ProLiant DL380 Gen9, BIOS P89 04/12/2017
RIP: 0010:__wake_up_common+0x98/0x290
el/sched/wait.c:87
Code: 40 4d 8d 78 e8 49 8d 7f 18 49 39 fd 0f 84 80 00 00 00 e8 6b bd 2b 00 49 8b 5f 18 45 31 e4 48 83 eb 18 4c 89 ff e8 08 bc 2b 00 <45> 8b 37 41 f6 c6 04 75 71 49 8d 7f 10 e8 46 bd 2b 00 49 8b 47 10
RSP: 0018:ffffc9000adbfaf0 EFLAGS: 00010046
RAX: 0000000000000000 RBX: ffffffffffffffe8 RCX: ffffffffaa9636b8
RDX: 0000000000000003 RSI: dffffc0000000000 RDI: ffffffffffffffe8
RBP: ffffc9000adbfb40 R08: fffffbfff582c5fd R09: fffffbfff582c5fd
R10: ffffffffac162fe3 R11: fffffbfff582c5fc R12: 0000000000000000
R13: ffff888ef82b0960 R14: ffffc9000adbfb80 R15: ffffffffffffffe8
FS:  00007fdcba4c4740(0000) GS:ffff889033780000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffffffffe8 CR3: 0000000f776a0004 CR4: 00000000001606e0
Call Trace:
 __wake_up_common_lock+0xea/0x150
ommon_lock at kernel/sched/wait.c:124
 ? __wake_up_common+0x290/0x290
 ? lockdep_hardirqs_on+0x16/0x2c0
 __wake_up+0x13/0x20
 io_cqring_ev_posted+0x75/0xe0
v_posted at fs/io_uring.c:1160
 io_ring_ctx_wait_and_kill+0x1c0/0x2f0
l at fs/io_uring.c:7305
 io_uring_create+0xa8d/0x13b0
 ? io_req_defer_prep+0x990/0x990
 ? __kasan_check_write+0x14/0x20
 io_uring_setup+0xb8/0x130
 ? io_uring_create+0x13b0/0x13b0
 ? check_flags.part.28+0x220/0x220
 ? lockdep_hardirqs_on+0x16/0x2c0
 __x64_sys_io_uring_setup+0x31/0x40
 do_syscall_64+0xcc/0xaf0
 ? syscall_return_slowpath+0x580/0x580
 ? lockdep_hardirqs_off+0x1f/0x140
 ? entry_SYSCALL_64_after_hwframe+0x3e/0xb3
 ? trace_hardirqs_off_caller+0x3a/0x150
 ? trace_hardirqs_off_thunk+0x1a/0x1c
 entry_SYSCALL_64_after_hwframe+0x49/0xb3
RIP: 0033:0x7fdcb9dd76ed
Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 6b 57 2c 00 f7 d8 64 89 01 48
RSP: 002b:00007ffe7fd4e4f8 EFLAGS: 00000246 ORIG_RAX: 00000000000001a9
RAX: ffffffffffffffda RBX: 00000000000001a9 RCX: 00007fdcb9dd76ed
RDX: fffffffffffffffc RSI: 0000000000000000 RDI: 0000000000005d54
RBP: 00000000000001a9 R08: 0000000e31d3caa7 R09: 0082400004004000
R10: ffffffffffffffff R11: 0000000000000246 R12: 0000000000000002
R13: 00007fdcb842e058 R14: 00007fdcba4c46c0 R15: 00007fdcb842e000
Modules linked in: bridge stp llc nfnetlink cn brd vfat fat ext4 crc16 mbcache jbd2 loop kvm_intel kvm irqbypass intel_cstate intel_uncore dax_pmem intel_rapl_perf dax_pmem_core ip_tables x_tables xfs sd_mod tg3 firmware_class libphy hpsa scsi_transport_sas dm_mirror dm_region_hash dm_log dm_mod [last unloaded: binfmt_misc]
CR2: ffffffffffffffe8
---[ end trace f9502383d57e0e22 ]---
RIP: 0010:__wake_up_common+0x98/0x290
Code: 40 4d 8d 78 e8 49 8d 7f 18 49 39 fd 0f 84 80 00 00 00 e8 6b bd 2b 00 49 8b 5f 18 45 31 e4 48 83 eb 18 4c 89 ff e8 08 bc 2b 00 <45> 8b 37 41 f6 c6 04 75 71 49 8d 7f 10 e8 46 bd 2b 00 49 8b 47 10
RSP: 0018:ffffc9000adbfaf0 EFLAGS: 00010046
RAX: 0000000000000000 RBX: ffffffffffffffe8 RCX: ffffffffaa9636b8
RDX: 0000000000000003 RSI: dffffc0000000000 RDI: ffffffffffffffe8
RBP: ffffc9000adbfb40 R08: fffffbfff582c5fd R09: fffffbfff582c5fd
R10: ffffffffac162fe3 R11: fffffbfff582c5fc R12: 0000000000000000
R13: ffff888ef82b0960 R14: ffffc9000adbfb80 R15: ffffffffffffffe8
FS:  00007fdcba4c4740(0000) GS:ffff889033780000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffffffffe8 CR3: 0000000f776a0004 CR4: 00000000001606e0
Kernel panic - not syncing: Fatal exception
Kernel Offset: 0x29800000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff)
---[ end Kernel panic - not syncing: Fatal exception ]—

which is due to error injection (or allocation failure) preventing the
rings from being setup. On shutdown, we attempt to remove any pending
requests, and for poll request, we call io_cqring_ev_posted() when we've
killed poll requests. However, since the rings aren't setup, we won't
find any poll requests. Make the calling of io_cqring_ev_posted()
dependent on actually having completed requests. This fixes this setup
corner case, and removes spurious calls if we remove poll requests and
don't find any.

Reported-by: Qian Cai <[email protected]>
Signed-off-by: Jens Axboe <[email protected]>
pull bot pushed a commit that referenced this pull request Apr 23, 2020
find_mergeable_vma() can return NULL.  In this case, it leads to a crash
when we access vm_mm(its offset is 0x40) later in write_protect_page.
And this case did happen on our server.  The following call trace is
captured in kernel 4.19 with the following patch applied and KSM zero
page enabled on our server.

  commit e86c59b ("mm/ksm: improve deduplication of zero pages with colouring")

So add a vma check to fix it.

  BUG: unable to handle kernel NULL pointer dereference at 0000000000000040
  Oops: 0000 [#1] SMP NOPTI
  CPU: 9 PID: 510 Comm: ksmd Kdump: loaded Tainted: G OE 4.19.36.bsk.9-amd64 #4.19.36.bsk.9
  RIP: try_to_merge_one_page+0xc7/0x760
  Code: 24 58 65 48 33 34 25 28 00 00 00 89 e8 0f 85 a3 06 00 00 48 83 c4
        60 5b 5d 41 5c 41 5d 41 5e 41 5f c3 48 8b 46 08 a8 01 75 b8 <49>
        8b 44 24 40 4c 8d 7c 24 20 b9 07 00 00 00 4c 89 e6 4c 89 ff 48
  RSP: 0018:ffffadbdd9fffdb0 EFLAGS: 00010246
  RAX: ffffda83ffd4be08 RBX: ffffda83ffd4be40 RCX: 0000002c6e800000
  RDX: 0000000000000000 RSI: ffffda83ffd4be40 RDI: 0000000000000000
  RBP: ffffa11939f02ec0 R08: 0000000094e1a447 R09: 00000000abe76577
  R10: 0000000000000962 R11: 0000000000004e6a R12: 0000000000000000
  R13: ffffda83b1e06380 R14: ffffa18f31f072c0 R15: ffffda83ffd4be40
  FS: 0000000000000000(0000) GS:ffffa0da43b80000(0000) knlGS:0000000000000000
  CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000000000000040 CR3: 0000002c77c0a003 CR4: 00000000007626e0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  PKRU: 55555554
  Call Trace:
    ksm_scan_thread+0x115e/0x1960
    kthread+0xf5/0x130
    ret_from_fork+0x1f/0x30

[[email protected]: if the vma is out of date, just exit]
  Link: http://lkml.kernel.org/r/[email protected]
[[email protected]: add the conventional braces, replace /** with /*]
Fixes: e86c59b ("mm/ksm: improve deduplication of zero pages with colouring")
Co-developed-by: Xiongchun Duan <[email protected]>
Signed-off-by: Muchun Song <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Reviewed-by: David Hildenbrand <[email protected]>
Reviewed-by: Kirill Tkhai <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: Yang Shi <[email protected]>
Cc: Claudio Imbrenda <[email protected]>
Cc: Markus Elfring <[email protected]>
Cc: <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
pull bot pushed a commit that referenced this pull request Apr 25, 2020
Florian Fainelli says:

====================
net: dsa: b53: Various ARL fixes

This patch series fixes a number of short comings in the existing b53
driver ARL management logic in particular:

- we were not looking up the {MAC,VID} tuples against their VID, despite
  having VLANs enabled

- the MDB entries (multicast) would lose their validity as soon as a
  single port in the vector would leave the entry

- the ARL was currently under utilized because we would always place new
  entries in bin index #1, instead of using all possible bins available,
  thus reducing the ARL effective size by 50% or 75% depending on the
  switch generation

- it was possible to overwrite the ARL entries because no proper space
  verification was done

This patch series addresses all of these issues.

Changes in v2:
- added a new patch to correctly flip invidual VLAN learning vs. shared
  VLAN learning depending on the global VLAN state

- added Andrew's R-b tags for patches which did not change

- corrected some verbosity and minor issues in patch #4 to match caller
  expectations, also avoid a variable length DECLARE_BITMAP() call
====================

Signed-off-by: David S. Miller <[email protected]>
pull bot pushed a commit that referenced this pull request Apr 29, 2020
For skcipher algorithms, the input, output HW S/G tables
look like this: [IV, src][dst, IV]
Now, we can have 2 conditions here:
- there is no IV;
- src and dst are equal (in-place encryption) and scattered
and the error is an "off-by-one" in the HW S/G table.

This issue was seen with KASAN:
BUG: KASAN: slab-out-of-bounds in skcipher_edesc_alloc+0x95c/0x1018

Read of size 4 at addr ffff000022a02958 by task cryptomgr_test/321

CPU: 2 PID: 321 Comm: cryptomgr_test Not tainted
5.6.0-rc1-00165-ge4ef8383-dirty #4
Hardware name: LS1046A RDB Board (DT)
Call trace:
 dump_backtrace+0x0/0x260
 show_stack+0x14/0x20
 dump_stack+0xe8/0x144
 print_address_description.isra.11+0x64/0x348
 __kasan_report+0x11c/0x230
 kasan_report+0xc/0x18
 __asan_load4+0x90/0xb0
 skcipher_edesc_alloc+0x95c/0x1018
 skcipher_encrypt+0x84/0x150
 crypto_skcipher_encrypt+0x50/0x68
 test_skcipher_vec_cfg+0x4d4/0xc10
 test_skcipher_vec+0x178/0x1d8
 alg_test_skcipher+0xec/0x230
 alg_test.part.44+0x114/0x4a0
 alg_test+0x1c/0x60
 cryptomgr_test+0x34/0x58
 kthread+0x1b8/0x1c0
 ret_from_fork+0x10/0x18

Allocated by task 321:
 save_stack+0x24/0xb0
 __kasan_kmalloc.isra.10+0xc4/0xe0
 kasan_kmalloc+0xc/0x18
 __kmalloc+0x178/0x2b8
 skcipher_edesc_alloc+0x21c/0x1018
 skcipher_encrypt+0x84/0x150
 crypto_skcipher_encrypt+0x50/0x68
 test_skcipher_vec_cfg+0x4d4/0xc10
 test_skcipher_vec+0x178/0x1d8
 alg_test_skcipher+0xec/0x230
 alg_test.part.44+0x114/0x4a0
 alg_test+0x1c/0x60
 cryptomgr_test+0x34/0x58
 kthread+0x1b8/0x1c0
 ret_from_fork+0x10/0x18

Freed by task 0:
(stack is not available)

The buggy address belongs to the object at ffff000022a02800
 which belongs to the cache dma-kmalloc-512 of size 512
The buggy address is located 344 bytes inside of
 512-byte region [ffff000022a02800, ffff000022a02a00)
The buggy address belongs to the page:
page:fffffe00006a8000 refcount:1 mapcount:0 mapping:ffff00093200c400
index:0x0 compound_mapcount: 0
flags: 0xffff00000010200(slab|head)
raw: 0ffff00000010200 dead000000000100 dead000000000122 ffff00093200c400
raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected

Memory state around the buggy address:
 ffff000022a02800: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ffff000022a02880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>ffff000022a02900: 00 00 00 00 00 00 00 00 00 00 fc fc fc fc fc fc
                                                    ^
 ffff000022a02980: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff000022a02a00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fixes: 334d37c ("crypto: caam - update IV using HW support")
Cc: <[email protected]> # v5.3+
Signed-off-by: Iuliana Prodan <[email protected]>
Reviewed-by: Horia Geantă <[email protected]>
Signed-off-by: Herbert Xu <[email protected]>
pull bot pushed a commit that referenced this pull request May 8, 2020
Without CONFIG_PREEMPT, it can happen that we get soft lockups detected,
e.g., while booting up.

  watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [swapper/0:1]
  CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.6.0-next-20200331+ #4
  Hardware name: Red Hat KVM, BIOS 1.11.1-4.module+el8.1.0+4066+0f1aadab 04/01/2014
  RIP: __pageblock_pfn_to_page+0x134/0x1c0
  Call Trace:
   set_zone_contiguous+0x56/0x70
   page_alloc_init_late+0x166/0x176
   kernel_init_freeable+0xfa/0x255
   kernel_init+0xa/0x106
   ret_from_fork+0x35/0x40

The issue becomes visible when having a lot of memory (e.g., 4TB)
assigned to a single NUMA node - a system that can easily be created
using QEMU.  Inside VMs on a hypervisor with quite some memory
overcommit, this is fairly easy to trigger.

Signed-off-by: David Hildenbrand <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Reviewed-by: Pavel Tatashin <[email protected]>
Reviewed-by: Pankaj Gupta <[email protected]>
Reviewed-by: Baoquan He <[email protected]>
Reviewed-by: Shile Zhang <[email protected]>
Acked-by: Michal Hocko <[email protected]>
Cc: Kirill Tkhai <[email protected]>
Cc: Shile Zhang <[email protected]>
Cc: Pavel Tatashin <[email protected]>
Cc: Daniel Jordan <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Alexander Duyck <[email protected]>
Cc: Baoquan He <[email protected]>
Cc: Oscar Salvador <[email protected]>
Cc: <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
pull bot pushed a commit that referenced this pull request May 8, 2020
Since 5.7-rc1, on btrfs we have a percpu counter initialization for
which we always pass a GFP_KERNEL gfp_t argument (this happens since
commit 2992df7 ("btrfs: Implement DREW lock")).

That is safe in some contextes but not on others where allowing fs
reclaim could lead to a deadlock because we are either holding some
btrfs lock needed for a transaction commit or holding a btrfs
transaction handle open.  Because of that we surround the call to the
function that initializes the percpu counter with a NOFS context using
memalloc_nofs_save() (this is done at btrfs_init_fs_root()).

However it turns out that this is not enough to prevent a possible
deadlock because percpu_alloc() determines if it is in an atomic context
by looking exclusively at the gfp flags passed to it (GFP_KERNEL in this
case) and it is not aware that a NOFS context is set.

Because percpu_alloc() thinks it is in a non atomic context it locks the
pcpu_alloc_mutex.  This can result in a btrfs deadlock when
pcpu_balance_workfn() is running, has acquired that mutex and is waiting
for reclaim, while the btrfs task that called percpu_counter_init() (and
therefore percpu_alloc()) is holding either the btrfs commit_root
semaphore or a transaction handle (done fs/btrfs/backref.c:
iterate_extent_inodes()), which prevents reclaim from finishing as an
attempt to commit the current btrfs transaction will deadlock.

Lockdep reports this issue with the following trace:

  ======================================================
  WARNING: possible circular locking dependency detected
  5.6.0-rc7-btrfs-next-77 #1 Not tainted
  ------------------------------------------------------
  kswapd0/91 is trying to acquire lock:
  ffff8938a3b3fdc8 (&delayed_node->mutex){+.+.}, at: __btrfs_release_delayed_node.part.0+0x3f/0x320 [btrfs]

  but task is already holding lock:
  ffffffffb4f0dbc0 (fs_reclaim){+.+.}, at: __fs_reclaim_acquire+0x5/0x30

  which lock already depends on the new lock.

  the existing dependency chain (in reverse order) is:

  -> #4 (fs_reclaim){+.+.}:
         fs_reclaim_acquire.part.0+0x25/0x30
         __kmalloc+0x5f/0x3a0
         pcpu_create_chunk+0x19/0x230
         pcpu_balance_workfn+0x56a/0x680
         process_one_work+0x235/0x5f0
         worker_thread+0x50/0x3b0
         kthread+0x120/0x140
         ret_from_fork+0x3a/0x50

  -> #3 (pcpu_alloc_mutex){+.+.}:
         __mutex_lock+0xa9/0xaf0
         pcpu_alloc+0x480/0x7c0
         __percpu_counter_init+0x50/0xd0
         btrfs_drew_lock_init+0x22/0x70 [btrfs]
         btrfs_get_fs_root+0x29c/0x5c0 [btrfs]
         resolve_indirect_refs+0x120/0xa30 [btrfs]
         find_parent_nodes+0x50b/0xf30 [btrfs]
         btrfs_find_all_leafs+0x60/0xb0 [btrfs]
         iterate_extent_inodes+0x139/0x2f0 [btrfs]
         iterate_inodes_from_logical+0xa1/0xe0 [btrfs]
         btrfs_ioctl_logical_to_ino+0xb4/0x190 [btrfs]
         btrfs_ioctl+0x165a/0x3130 [btrfs]
         ksys_ioctl+0x87/0xc0
         __x64_sys_ioctl+0x16/0x20
         do_syscall_64+0x5c/0x260
         entry_SYSCALL_64_after_hwframe+0x49/0xbe

  -> #2 (&fs_info->commit_root_sem){++++}:
         down_write+0x38/0x70
         btrfs_cache_block_group+0x2ec/0x500 [btrfs]
         find_free_extent+0xc6a/0x1600 [btrfs]
         btrfs_reserve_extent+0x9b/0x180 [btrfs]
         btrfs_alloc_tree_block+0xc1/0x350 [btrfs]
         alloc_tree_block_no_bg_flush+0x4a/0x60 [btrfs]
         __btrfs_cow_block+0x122/0x5a0 [btrfs]
         btrfs_cow_block+0x106/0x240 [btrfs]
         commit_cowonly_roots+0x55/0x310 [btrfs]
         btrfs_commit_transaction+0x509/0xb20 [btrfs]
         sync_filesystem+0x74/0x90
         generic_shutdown_super+0x22/0x100
         kill_anon_super+0x14/0x30
         btrfs_kill_super+0x12/0x20 [btrfs]
         deactivate_locked_super+0x31/0x70
         cleanup_mnt+0x100/0x160
         task_work_run+0x93/0xc0
         exit_to_usermode_loop+0xf9/0x100
         do_syscall_64+0x20d/0x260
         entry_SYSCALL_64_after_hwframe+0x49/0xbe

  -> #1 (&space_info->groups_sem){++++}:
         down_read+0x3c/0x140
         find_free_extent+0xef6/0x1600 [btrfs]
         btrfs_reserve_extent+0x9b/0x180 [btrfs]
         btrfs_alloc_tree_block+0xc1/0x350 [btrfs]
         alloc_tree_block_no_bg_flush+0x4a/0x60 [btrfs]
         __btrfs_cow_block+0x122/0x5a0 [btrfs]
         btrfs_cow_block+0x106/0x240 [btrfs]
         btrfs_search_slot+0x50c/0xd60 [btrfs]
         btrfs_lookup_inode+0x3a/0xc0 [btrfs]
         __btrfs_update_delayed_inode+0x90/0x280 [btrfs]
         __btrfs_commit_inode_delayed_items+0x81f/0x870 [btrfs]
         __btrfs_run_delayed_items+0x8e/0x180 [btrfs]
         btrfs_commit_transaction+0x31b/0xb20 [btrfs]
         iterate_supers+0x87/0xf0
         ksys_sync+0x60/0xb0
         __ia32_sys_sync+0xa/0x10
         do_syscall_64+0x5c/0x260
         entry_SYSCALL_64_after_hwframe+0x49/0xbe

  -> #0 (&delayed_node->mutex){+.+.}:
         __lock_acquire+0xef0/0x1c80
         lock_acquire+0xa2/0x1d0
         __mutex_lock+0xa9/0xaf0
         __btrfs_release_delayed_node.part.0+0x3f/0x320 [btrfs]
         btrfs_evict_inode+0x40d/0x560 [btrfs]
         evict+0xd9/0x1c0
         dispose_list+0x48/0x70
         prune_icache_sb+0x54/0x80
         super_cache_scan+0x124/0x1a0
         do_shrink_slab+0x176/0x440
         shrink_slab+0x23a/0x2c0
         shrink_node+0x188/0x6e0
         balance_pgdat+0x31d/0x7f0
         kswapd+0x238/0x550
         kthread+0x120/0x140
         ret_from_fork+0x3a/0x50

  other info that might help us debug this:

  Chain exists of:
    &delayed_node->mutex --> pcpu_alloc_mutex --> fs_reclaim

   Possible unsafe locking scenario:

         CPU0                    CPU1
         ----                    ----
    lock(fs_reclaim);
                                 lock(pcpu_alloc_mutex);
                                 lock(fs_reclaim);
    lock(&delayed_node->mutex);

   *** DEADLOCK ***

  3 locks held by kswapd0/91:
   #0: (fs_reclaim){+.+.}, at: __fs_reclaim_acquire+0x5/0x30
   #1: (shrinker_rwsem){++++}, at: shrink_slab+0x12f/0x2c0
   #2: (&type->s_umount_key#43){++++}, at: trylock_super+0x16/0x50

  stack backtrace:
  CPU: 1 PID: 91 Comm: kswapd0 Not tainted 5.6.0-rc7-btrfs-next-77 #1
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
  Call Trace:
   dump_stack+0x8f/0xd0
   check_noncircular+0x170/0x190
   __lock_acquire+0xef0/0x1c80
   lock_acquire+0xa2/0x1d0
   __mutex_lock+0xa9/0xaf0
   __btrfs_release_delayed_node.part.0+0x3f/0x320 [btrfs]
   btrfs_evict_inode+0x40d/0x560 [btrfs]
   evict+0xd9/0x1c0
   dispose_list+0x48/0x70
   prune_icache_sb+0x54/0x80
   super_cache_scan+0x124/0x1a0
   do_shrink_slab+0x176/0x440
   shrink_slab+0x23a/0x2c0
   shrink_node+0x188/0x6e0
   balance_pgdat+0x31d/0x7f0
   kswapd+0x238/0x550
   kthread+0x120/0x140
   ret_from_fork+0x3a/0x50

This could be fixed by making btrfs pass GFP_NOFS instead of GFP_KERNEL
to percpu_counter_init() in contextes where it is not reclaim safe,
however that type of approach is discouraged since
memalloc_[nofs|noio]_save() were introduced.  Therefore this change
makes pcpu_alloc() look up into an existing nofs/noio context before
deciding whether it is in an atomic context or not.

Signed-off-by: Filipe Manana <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Reviewed-by: Andrew Morton <[email protected]>
Acked-by: Tejun Heo <[email protected]>
Acked-by: Dennis Zhou <[email protected]>
Cc: Tejun Heo <[email protected]>
Cc: Christoph Lameter <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
pull bot pushed a commit that referenced this pull request May 17, 2020
The check for the HWO flag in dwc3_gadget_ep_reclaim_trb_sg()
causes us to break out of the loop before we call
dwc3_gadget_ep_reclaim_completed_trb(), which is what likely
should be clearing the HWO flag.

This can cause odd behavior where we never reclaim all the trbs
in the sg list, so we never call giveback on a usb req, and that
will causes transfer stalls.

This effectively resovles the adb stalls seen on HiKey960
after userland changes started only using AIO in adbd.

Cc: YongQin Liu <[email protected]>
Cc: Anurag Kumar Vulisha <[email protected]>
Cc: Yang Fei <[email protected]>
Cc: Thinh Nguyen <[email protected]>
Cc: Tejas Joglekar <[email protected]>
Cc: Andrzej Pietrasiewicz <[email protected]>
Cc: Jack Pham <[email protected]>
Cc: Josh Gao <[email protected]>
Cc: Todd Kjos <[email protected]>
Cc: Felipe Balbi <[email protected]>
Cc: Greg Kroah-Hartman <[email protected]>
Cc: [email protected]
Cc: [email protected] #4.20+
Signed-off-by: John Stultz <[email protected]>
Signed-off-by: Felipe Balbi <[email protected]>
pull bot pushed a commit that referenced this pull request May 24, 2020
This BUG halt was reported a while back, but the patch somehow got
missed:

PID: 2879   TASK: c16adaa0  CPU: 1   COMMAND: "sctpn"
 #0 [f418dd28] crash_kexec at c04a7d8c
 #1 [f418dd7c] oops_end at c0863e02
 #2 [f418dd90] do_invalid_op at c040aaca
 #3 [f418de28] error_code (via invalid_op) at c08631a5
    EAX: f34baac0  EBX: 00000090  ECX: f418deb0  EDX: f5542950  EBP: 00000000
    DS:  007b      ESI: f34ba800  ES:  007b      EDI: f418dea0  GS:  00e0
    CS:  0060      EIP: c046fa5e  ERR: ffffffff  EFLAGS: 00010286
 #4 [f418de5c] add_timer at c046fa5e
 #5 [f418de68] sctp_do_sm at f8db8c77 [sctp]
 #6 [f418df30] sctp_primitive_SHUTDOWN at f8dcc1b5 [sctp]
 #7 [f418df48] inet_shutdown at c080baf9
 #8 [f418df5c] sys_shutdown at c079eedf
 #9 [f418df7] sys_socketcall at c079fe88
    EAX: ffffffda  EBX: 0000000d  ECX: bfceea90  EDX: 0937af98
    DS:  007b      ESI: 0000000c  ES:  007b      EDI: b7150ae4
    SS:  007b      ESP: bfceea7c  EBP: bfceeaa8  GS:  0033
    CS:  0073      EIP: b775c424  ERR: 00000066  EFLAGS: 00000282

It appears that the side effect that starts the shutdown timer was processed
multiple times, which can happen as multiple paths can trigger it.  This of
course leads to the BUG halt in add_timer getting called.

Fix seems pretty straightforward, just check before the timer is added if its
already been started.  If it has mod the timer instead to min(current
expiration, new expiration)

Its been tested but not confirmed to fix the problem, as the issue has only
occured in production environments where test kernels are enjoined from being
installed.  It appears to be a sane fix to me though.  Also, recentely,
Jere found a reproducer posted on list to confirm that this resolves the
issues

Signed-off-by: Neil Horman <[email protected]>
CC: Vlad Yasevich <[email protected]>
CC: "David S. Miller" <[email protected]>
CC: [email protected]
CC: [email protected]
CC: [email protected]
Acked-by: Marcelo Ricardo Leitner <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
pull bot pushed a commit that referenced this pull request May 31, 2020
Be there a platform with the following layout:

      Regular NIC
       |
       +----> DSA master for switch port
               |
               +----> DSA master for another switch port

After changing DSA back to static lockdep class keys in commit
1a33e10 ("net: partially revert dynamic lockdep key changes"), this
kernel splat can be seen:

[   13.361198] ============================================
[   13.366524] WARNING: possible recursive locking detected
[   13.371851] 5.7.0-rc4-02121-gc32a05ecd7af-dirty torvalds#988 Not tainted
[   13.377874] --------------------------------------------
[   13.383201] swapper/0/0 is trying to acquire lock:
[   13.388004] ffff0000668ff298 (&dsa_slave_netdev_xmit_lock_key){+.-.}-{2:2}, at: __dev_queue_xmit+0x84c/0xbe0
[   13.397879]
[   13.397879] but task is already holding lock:
[   13.403727] ffff0000661a1698 (&dsa_slave_netdev_xmit_lock_key){+.-.}-{2:2}, at: __dev_queue_xmit+0x84c/0xbe0
[   13.413593]
[   13.413593] other info that might help us debug this:
[   13.420140]  Possible unsafe locking scenario:
[   13.420140]
[   13.426075]        CPU0
[   13.428523]        ----
[   13.430969]   lock(&dsa_slave_netdev_xmit_lock_key);
[   13.435946]   lock(&dsa_slave_netdev_xmit_lock_key);
[   13.440924]
[   13.440924]  *** DEADLOCK ***
[   13.440924]
[   13.446860]  May be due to missing lock nesting notation
[   13.446860]
[   13.453668] 6 locks held by swapper/0/0:
[   13.457598]  #0: ffff800010003de0 ((&idev->mc_ifc_timer)){+.-.}-{0:0}, at: call_timer_fn+0x0/0x400
[   13.466593]  #1: ffffd4d3fb478700 (rcu_read_lock){....}-{1:2}, at: mld_sendpack+0x0/0x560
[   13.474803]  #2: ffffd4d3fb478728 (rcu_read_lock_bh){....}-{1:2}, at: ip6_finish_output2+0x64/0xb10
[   13.483886]  #3: ffffd4d3fb478728 (rcu_read_lock_bh){....}-{1:2}, at: __dev_queue_xmit+0x6c/0xbe0
[   13.492793]  #4: ffff0000661a1698 (&dsa_slave_netdev_xmit_lock_key){+.-.}-{2:2}, at: __dev_queue_xmit+0x84c/0xbe0
[   13.503094]  #5: ffffd4d3fb478728 (rcu_read_lock_bh){....}-{1:2}, at: __dev_queue_xmit+0x6c/0xbe0
[   13.512000]
[   13.512000] stack backtrace:
[   13.516369] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.7.0-rc4-02121-gc32a05ecd7af-dirty torvalds#988
[   13.530421] Call trace:
[   13.532871]  dump_backtrace+0x0/0x1d8
[   13.536539]  show_stack+0x24/0x30
[   13.539862]  dump_stack+0xe8/0x150
[   13.543271]  __lock_acquire+0x1030/0x1678
[   13.547290]  lock_acquire+0xf8/0x458
[   13.550873]  _raw_spin_lock+0x44/0x58
[   13.554543]  __dev_queue_xmit+0x84c/0xbe0
[   13.558562]  dev_queue_xmit+0x24/0x30
[   13.562232]  dsa_slave_xmit+0xe0/0x128
[   13.565988]  dev_hard_start_xmit+0xf4/0x448
[   13.570182]  __dev_queue_xmit+0x808/0xbe0
[   13.574200]  dev_queue_xmit+0x24/0x30
[   13.577869]  neigh_resolve_output+0x15c/0x220
[   13.582237]  ip6_finish_output2+0x244/0xb10
[   13.586430]  __ip6_finish_output+0x1dc/0x298
[   13.590709]  ip6_output+0x84/0x358
[   13.594116]  mld_sendpack+0x2bc/0x560
[   13.597786]  mld_ifc_timer_expire+0x210/0x390
[   13.602153]  call_timer_fn+0xcc/0x400
[   13.605822]  run_timer_softirq+0x588/0x6e0
[   13.609927]  __do_softirq+0x118/0x590
[   13.613597]  irq_exit+0x13c/0x148
[   13.616918]  __handle_domain_irq+0x6c/0xc0
[   13.621023]  gic_handle_irq+0x6c/0x160
[   13.624779]  el1_irq+0xbc/0x180
[   13.627927]  cpuidle_enter_state+0xb4/0x4d0
[   13.632120]  cpuidle_enter+0x3c/0x50
[   13.635703]  call_cpuidle+0x44/0x78
[   13.639199]  do_idle+0x228/0x2c8
[   13.642433]  cpu_startup_entry+0x2c/0x48
[   13.646363]  rest_init+0x1ac/0x280
[   13.649773]  arch_call_rest_init+0x14/0x1c
[   13.653878]  start_kernel+0x490/0x4bc

Lockdep keys themselves were added in commit ab92d68 ("net: core:
add generic lockdep keys"), and it's very likely that this splat existed
since then, but I have no real way to check, since this stacked platform
wasn't supported by mainline back then.

>From Taehee's own words:

  This patch was considered that all stackable devices have LLTX flag.
  But the dsa doesn't have LLTX, so this splat happened.
  After this patch, dsa shares the same lockdep class key.
  On the nested dsa interface architecture, which you illustrated,
  the same lockdep class key will be used in __dev_queue_xmit() because
  dsa doesn't have LLTX.
  So that lockdep detects deadlock because the same lockdep class key is
  used recursively although actually the different locks are used.
  There are some ways to fix this problem.

  1. using NETIF_F_LLTX flag.
  If possible, using the LLTX flag is a very clear way for it.
  But I'm so sorry I don't know whether the dsa could have LLTX or not.

  2. using dynamic lockdep again.
  It means that each interface uses a separate lockdep class key.
  So, lockdep will not detect recursive locking.
  But this way has a problem that it could consume lockdep class key
  too many.
  Currently, lockdep can have 8192 lockdep class keys.
   - you can see this number with the following command.
     cat /proc/lockdep_stats
     lock-classes:                         1251 [max: 8192]
     ...
     The [max: 8192] means that the maximum number of lockdep class keys.
  If too many lockdep class keys are registered, lockdep stops to work.
  So, using a dynamic(separated) lockdep class key should be considered
  carefully.
  In addition, updating lockdep class key routine might have to be existing.
  (lockdep_register_key(), lockdep_set_class(), lockdep_unregister_key())

  3. Using lockdep subclass.
  A lockdep class key could have 8 subclasses.
  The different subclass is considered different locks by lockdep
  infrastructure.
  But "lock-classes" is not counted by subclasses.
  So, it could avoid stopping lockdep infrastructure by an overflow of
  lockdep class keys.
  This approach should also have an updating lockdep class key routine.
  (lockdep_set_subclass())

  4. Using nonvalidate lockdep class key.
  The lockdep infrastructure supports nonvalidate lockdep class key type.
  It means this lockdep is not validated by lockdep infrastructure.
  So, the splat will not happen but lockdep couldn't detect real deadlock
  case because lockdep really doesn't validate it.
  I think this should be used for really special cases.
  (lockdep_set_novalidate_class())

Further discussion here:
https://patchwork.ozlabs.org/project/netdev/patch/[email protected]/

There appears to be no negative side-effect to declaring lockless TX for
the DSA virtual interfaces, which means they handle their own locking.
So that's what we do to make the splat go away.

Patch tested in a wide variety of cases: unicast, multicast, PTP, etc.

Fixes: ab92d68 ("net: core: add generic lockdep keys")
Suggested-by: Taehee Yoo <[email protected]>
Signed-off-by: Vladimir Oltean <[email protected]>
Reviewed-by: Florian Fainelli <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
pull bot pushed a commit that referenced this pull request Jun 2, 2020
Realloc of size zero is a free not an error, avoid this causing a double
free. Caught by clang's address sanitizer:

==2634==ERROR: AddressSanitizer: attempting double-free on 0x6020000015f0 in thread T0:
    #0 0x5649659297fd in free llvm/llvm-project/compiler-rt/lib/asan/asan_malloc_linux.cpp:123:3
    #1 0x5649659e9251 in __zfree tools/lib/zalloc.c:13:2
    #2 0x564965c0f92c in mem2node__exit tools/perf/util/mem2node.c:114:2
    #3 0x564965a08b4c in perf_c2c__report tools/perf/builtin-c2c.c:2867:2
    #4 0x564965a0616a in cmd_c2c tools/perf/builtin-c2c.c:2989:10
    #5 0x564965944348 in run_builtin tools/perf/perf.c:312:11
    #6 0x564965943235 in handle_internal_command tools/perf/perf.c:364:8
    #7 0x5649659440c4 in run_argv tools/perf/perf.c:408:2
    #8 0x564965942e41 in main tools/perf/perf.c:538:3

0x6020000015f0 is located 0 bytes inside of 1-byte region [0x6020000015f0,0x6020000015f1)
freed by thread T0 here:
    #0 0x564965929da3 in realloc third_party/llvm/llvm-project/compiler-rt/lib/asan/asan_malloc_linux.cpp:164:3
    #1 0x564965c0f55e in mem2node__init tools/perf/util/mem2node.c:97:16
    #2 0x564965a08956 in perf_c2c__report tools/perf/builtin-c2c.c:2803:8
    #3 0x564965a0616a in cmd_c2c tools/perf/builtin-c2c.c:2989:10
    #4 0x564965944348 in run_builtin tools/perf/perf.c:312:11
    #5 0x564965943235 in handle_internal_command tools/perf/perf.c:364:8
    #6 0x5649659440c4 in run_argv tools/perf/perf.c:408:2
    #7 0x564965942e41 in main tools/perf/perf.c:538:3

previously allocated by thread T0 here:
    #0 0x564965929c42 in calloc third_party/llvm/llvm-project/compiler-rt/lib/asan/asan_malloc_linux.cpp:154:3
    #1 0x5649659e9220 in zalloc tools/lib/zalloc.c:8:9
    #2 0x564965c0f32d in mem2node__init tools/perf/util/mem2node.c:61:12
    #3 0x564965a08956 in perf_c2c__report tools/perf/builtin-c2c.c:2803:8
    #4 0x564965a0616a in cmd_c2c tools/perf/builtin-c2c.c:2989:10
    #5 0x564965944348 in run_builtin tools/perf/perf.c:312:11
    #6 0x564965943235 in handle_internal_command tools/perf/perf.c:364:8
    #7 0x5649659440c4 in run_argv tools/perf/perf.c:408:2
    #8 0x564965942e41 in main tools/perf/perf.c:538:3

v2: add a WARN_ON_ONCE when the free condition arises.

Signed-off-by: Ian Rogers <[email protected]>
Acked-by: Jiri Olsa <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Namhyung Kim <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Stephane Eranian <[email protected]>
Cc: [email protected]
Link: http://lore.kernel.org/lkml/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
pull bot pushed a commit that referenced this pull request Jun 3, 2020
We need to check mddev->del_work before flush workqueu since the purpose
of flush is to ensure the previous md is disappeared. Otherwise the similar
deadlock appeared if LOCKDEP is enabled, it is due to md_open holds the
bdev->bd_mutex before flush workqueue.

kernel: [  154.522645] ======================================================
kernel: [  154.522647] WARNING: possible circular locking dependency detected
kernel: [  154.522650] 5.6.0-rc7-lp151.27-default #25 Tainted: G           O
kernel: [  154.522651] ------------------------------------------------------
kernel: [  154.522653] mdadm/2482 is trying to acquire lock:
kernel: [  154.522655] ffff888078529128 ((wq_completion)md_misc){+.+.}, at: flush_workqueue+0x84/0x4b0
kernel: [  154.522673]
kernel: [  154.522673] but task is already holding lock:
kernel: [  154.522675] ffff88804efa9338 (&bdev->bd_mutex){+.+.}, at: __blkdev_get+0x79/0x590
kernel: [  154.522691]
kernel: [  154.522691] which lock already depends on the new lock.
kernel: [  154.522691]
kernel: [  154.522694]
kernel: [  154.522694] the existing dependency chain (in reverse order) is:
kernel: [  154.522696]
kernel: [  154.522696] -> #4 (&bdev->bd_mutex){+.+.}:
kernel: [  154.522704]        __mutex_lock+0x87/0x950
kernel: [  154.522706]        __blkdev_get+0x79/0x590
kernel: [  154.522708]        blkdev_get+0x65/0x140
kernel: [  154.522709]        blkdev_get_by_dev+0x2f/0x40
kernel: [  154.522716]        lock_rdev+0x3d/0x90 [md_mod]
kernel: [  154.522719]        md_import_device+0xd6/0x1b0 [md_mod]
kernel: [  154.522723]        new_dev_store+0x15e/0x210 [md_mod]
kernel: [  154.522728]        md_attr_store+0x7a/0xc0 [md_mod]
kernel: [  154.522732]        kernfs_fop_write+0x117/0x1b0
kernel: [  154.522735]        vfs_write+0xad/0x1a0
kernel: [  154.522737]        ksys_write+0xa4/0xe0
kernel: [  154.522745]        do_syscall_64+0x64/0x2b0
kernel: [  154.522748]        entry_SYSCALL_64_after_hwframe+0x49/0xbe
kernel: [  154.522749]
kernel: [  154.522749] -> #3 (&mddev->reconfig_mutex){+.+.}:
kernel: [  154.522752]        __mutex_lock+0x87/0x950
kernel: [  154.522756]        new_dev_store+0xc9/0x210 [md_mod]
kernel: [  154.522759]        md_attr_store+0x7a/0xc0 [md_mod]
kernel: [  154.522761]        kernfs_fop_write+0x117/0x1b0
kernel: [  154.522763]        vfs_write+0xad/0x1a0
kernel: [  154.522765]        ksys_write+0xa4/0xe0
kernel: [  154.522767]        do_syscall_64+0x64/0x2b0
kernel: [  154.522769]        entry_SYSCALL_64_after_hwframe+0x49/0xbe
kernel: [  154.522770]
kernel: [  154.522770] -> #2 (kn->count#253){++++}:
kernel: [  154.522775]        __kernfs_remove+0x253/0x2c0
kernel: [  154.522778]        kernfs_remove+0x1f/0x30
kernel: [  154.522780]        kobject_del+0x28/0x60
kernel: [  154.522783]        mddev_delayed_delete+0x24/0x30 [md_mod]
kernel: [  154.522786]        process_one_work+0x2a7/0x5f0
kernel: [  154.522788]        worker_thread+0x2d/0x3d0
kernel: [  154.522793]        kthread+0x117/0x130
kernel: [  154.522795]        ret_from_fork+0x3a/0x50
kernel: [  154.522796]
kernel: [  154.522796] -> #1 ((work_completion)(&mddev->del_work)){+.+.}:
kernel: [  154.522800]        process_one_work+0x27e/0x5f0
kernel: [  154.522802]        worker_thread+0x2d/0x3d0
kernel: [  154.522804]        kthread+0x117/0x130
kernel: [  154.522806]        ret_from_fork+0x3a/0x50
kernel: [  154.522807]
kernel: [  154.522807] -> #0 ((wq_completion)md_misc){+.+.}:
kernel: [  154.522813]        __lock_acquire+0x1392/0x1690
kernel: [  154.522816]        lock_acquire+0xb4/0x1a0
kernel: [  154.522818]        flush_workqueue+0xab/0x4b0
kernel: [  154.522821]        md_open+0xb6/0xc0 [md_mod]
kernel: [  154.522823]        __blkdev_get+0xea/0x590
kernel: [  154.522825]        blkdev_get+0x65/0x140
kernel: [  154.522828]        do_dentry_open+0x1d1/0x380
kernel: [  154.522831]        path_openat+0x567/0xcc0
kernel: [  154.522834]        do_filp_open+0x9b/0x110
kernel: [  154.522836]        do_sys_openat2+0x201/0x2a0
kernel: [  154.522838]        do_sys_open+0x57/0x80
kernel: [  154.522840]        do_syscall_64+0x64/0x2b0
kernel: [  154.522842]        entry_SYSCALL_64_after_hwframe+0x49/0xbe
kernel: [  154.522844]
kernel: [  154.522844] other info that might help us debug this:
kernel: [  154.522844]
kernel: [  154.522846] Chain exists of:
kernel: [  154.522846]   (wq_completion)md_misc --> &mddev->reconfig_mutex --> &bdev->bd_mutex
kernel: [  154.522846]
kernel: [  154.522850]  Possible unsafe locking scenario:
kernel: [  154.522850]
kernel: [  154.522852]        CPU0                    CPU1
kernel: [  154.522853]        ----                    ----
kernel: [  154.522854]   lock(&bdev->bd_mutex);
kernel: [  154.522856]                                lock(&mddev->reconfig_mutex);
kernel: [  154.522858]                                lock(&bdev->bd_mutex);
kernel: [  154.522860]   lock((wq_completion)md_misc);
kernel: [  154.522861]
kernel: [  154.522861]  *** DEADLOCK ***
kernel: [  154.522861]
kernel: [  154.522864] 1 lock held by mdadm/2482:
kernel: [  154.522865]  #0: ffff88804efa9338 (&bdev->bd_mutex){+.+.}, at: __blkdev_get+0x79/0x590
kernel: [  154.522868]
kernel: [  154.522868] stack backtrace:
kernel: [  154.522873] CPU: 1 PID: 2482 Comm: mdadm Tainted: G           O      5.6.0-rc7-lp151.27-default #25
kernel: [  154.522875] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
kernel: [  154.522878] Call Trace:
kernel: [  154.522881]  dump_stack+0x8f/0xcb
kernel: [  154.522884]  check_noncircular+0x194/0x1b0
kernel: [  154.522888]  ? __lock_acquire+0x1392/0x1690
kernel: [  154.522890]  __lock_acquire+0x1392/0x1690
kernel: [  154.522893]  lock_acquire+0xb4/0x1a0
kernel: [  154.522895]  ? flush_workqueue+0x84/0x4b0
kernel: [  154.522898]  flush_workqueue+0xab/0x4b0
kernel: [  154.522900]  ? flush_workqueue+0x84/0x4b0
kernel: [  154.522905]  ? md_open+0xb6/0xc0 [md_mod]
kernel: [  154.522908]  md_open+0xb6/0xc0 [md_mod]
kernel: [  154.522910]  __blkdev_get+0xea/0x590
kernel: [  154.522912]  ? bd_acquire+0xc0/0xc0
kernel: [  154.522914]  blkdev_get+0x65/0x140
kernel: [  154.522916]  ? bd_acquire+0xc0/0xc0
kernel: [  154.522918]  do_dentry_open+0x1d1/0x380
kernel: [  154.522921]  path_openat+0x567/0xcc0
kernel: [  154.522923]  ? __lock_acquire+0x380/0x1690
kernel: [  154.522926]  do_filp_open+0x9b/0x110
kernel: [  154.522929]  ? __alloc_fd+0xe5/0x1f0
kernel: [  154.522935]  ? kmem_cache_alloc+0x28c/0x630
kernel: [  154.522939]  ? do_sys_openat2+0x201/0x2a0
kernel: [  154.522941]  do_sys_openat2+0x201/0x2a0
kernel: [  154.522944]  do_sys_open+0x57/0x80
kernel: [  154.522946]  do_syscall_64+0x64/0x2b0
kernel: [  154.522948]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
kernel: [  154.522951] RIP: 0033:0x7f98d279d9ae

And md_alloc also flushed the same workqueue, but the thing is different
here. Because all the paths call md_alloc don't hold bdev->bd_mutex, and
the flush is necessary to avoid race condition, so leave it as it is.

Signed-off-by: Guoqing Jiang <[email protected]>
Signed-off-by: Song Liu <[email protected]>
pull bot pushed a commit that referenced this pull request Jun 4, 2020
The reclaim code that balances between swapping and cache reclaim tries to
predict likely reuse based on in-memory reference patterns alone.  This
works in many cases, but when it fails it cannot detect when the cache is
thrashing pathologically, or when we're in the middle of a swap storm.

The high seek cost of rotational drives under which the algorithm evolved
also meant that mistakes could quickly result in lockups from too
aggressive swapping (which is predominantly random IO).  As a result, the
balancing code has been tuned over time to a point where it mostly goes
for page cache and defers swapping until the VM is under significant
memory pressure.

The resulting strategy doesn't make optimal caching decisions - where
optimal is the least amount of IO required to execute the workload.

The proliferation of fast random IO devices such as SSDs, in-memory
compression such as zswap, and persistent memory technologies on the
horizon, has made this undesirable behavior very noticable: Even in the
presence of large amounts of cold anonymous memory and a capable swap
device, the VM refuses to even seriously scan these pages, and can leave
the page cache thrashing needlessly.

This series sets out to address this.  Since commit ("a528910e12ec mm:
thrash detection-based file cache sizing") we have exact tracking of
refault IO - the ultimate cost of reclaiming the wrong pages.  This allows
us to use an IO cost based balancing model that is more aggressive about
scanning anonymous memory when the cache is thrashing, while being able to
avoid unnecessary swap storms.

These patches base the LRU balance on the rate of refaults on each list,
times the relative IO cost between swap device and filesystem
(swappiness), in order to optimize reclaim for least IO cost incurred.

	History

I floated these changes in 2016.  At the time they were incomplete and
full of workarounds due to a lack of infrastructure in the reclaim code:
We didn't have PageWorkingset, we didn't have hierarchical cgroup
statistics, and problems with the cgroup swap controller.  As swapping
wasn't too high a priority then, the patches stalled out.  With all
dependencies in place now, here we are again with much cleaner,
feature-complete patches.

I kept the acks for patches that stayed materially the same :-)

Below is a series of test results that demonstrate certain problematic
behavior of the current code, as well as showcase the new code's more
predictable and appropriate balancing decisions.

	Test #1: No convergence

This test shows an edge case where the VM currently doesn't converge at
all on a new file workingset with a stale anon/tmpfs set.

The test sets up a cold anon set the size of 3/4 RAM, then tries to
establish a new file set half the size of RAM (flat access pattern).

The vanilla kernel refuses to even scan anon pages and never converges.
The file set is perpetually served from the filesystem.

The first test kernel is with the series up to the workingset patch
applied.  This allows thrashing page cache to challenge the anonymous
workingset.  The VM then scans the lists based on the current
scanned/rotated balancing algorithm.  It converges on a stable state where
all cold anon pages are pushed out and the fileset is served entirely from
cache:

			    noconverge/5.7-rc5-mm	noconverge/5.7-rc5-mm-workingset
Scanned			417719308.00 (    +0.00%)		64091155.00 (   -84.66%)
Reclaimed		417711094.00 (    +0.00%)		61640308.00 (   -85.24%)
Reclaim efficiency %	      100.00 (    +0.00%)		      96.18 (    -3.78%)
Scanned file		417719308.00 (    +0.00%)		59211118.00 (   -85.83%)
Scanned anon			0.00 (    +0.00%)	         4880037.00 (          )
Swapouts			0.00 (    +0.00%)	         2439957.00 (          )
Swapins				0.00 (    +0.00%)		     257.00 (          )
Refaults		415246605.00 (    +0.00%)		59183722.00 (   -85.75%)
Restore refaults		0.00 (    +0.00%)	        54988252.00 (          )

The second test kernel is with the full patch series applied, which
replaces the scanned/rotated ratios with refault/swapin rate-based
balancing.  It evicts the cold anon pages more aggressively in the
presence of a thrashing cache and the absence of swapins, and so converges
with about 60% of the IO and reclaim activity:

			noconverge/5.7-rc5-mm-workingset	noconverge/5.7-rc5-mm-lrubalance
Scanned				64091155.00 (    +0.00%)		37579741.00 (   -41.37%)
Reclaimed			61640308.00 (    +0.00%)		35129293.00 (   -43.01%)
Reclaim efficiency %		      96.18 (    +0.00%)		      93.48 (    -2.78%)
Scanned file			59211118.00 (    +0.00%)		32708385.00 (   -44.76%)
Scanned anon			 4880037.00 (    +0.00%)		 4871356.00 (    -0.18%)
Swapouts			 2439957.00 (    +0.00%)		 2435565.00 (    -0.18%)
Swapins				     257.00 (    +0.00%)		     262.00 (    +1.94%)
Refaults			59183722.00 (    +0.00%)		32675667.00 (   -44.79%)
Restore refaults		54988252.00 (    +0.00%)		28480430.00 (   -48.21%)

We're triggering this case in host sideloading scenarios: When a host's
primary workload is not saturating the machine (primary load is usually
driven by user activity), we can optimistically sideload a batch job; if
user activity picks up and the primary workload needs the whole host
during this time, we freeze the sideload and rely on it getting pushed to
swap.  Frequently that swapping doesn't happen and the completely inactive
sideload simply stays resident while the expanding primary worklad is
struggling to gain ground.

	Test #2: Kernel build

This test is a a kernel build that is slightly memory-restricted (make -j4
inside a 400M cgroup).

Despite the very aggressive swapping of cold anon pages in test #1, this
test shows that the new kernel carefully balances swap against cache
refaults when both the file and the cache set are pressured.

It shows the patched kernel to be slightly better at finding the coldest
memory from the combined anon and file set to evict under pressure.  The
result is lower aggregate reclaim and paging activity:

z				    5.7-rc5-mm	5.7-rc5-mm-lrubalance
Real time		   210.60 (    +0.00%)	   210.97 (    +0.18%)
User time		   745.42 (    +0.00%)	   746.48 (    +0.14%)
System time		    69.78 (    +0.00%)	    69.79 (    +0.02%)
Scanned file		354682.00 (    +0.00%)	293661.00 (   -17.20%)
Scanned anon		465381.00 (    +0.00%)	378144.00 (   -18.75%)
Swapouts		185920.00 (    +0.00%)	147801.00 (   -20.50%)
Swapins			 34583.00 (    +0.00%)	 32491.00 (    -6.05%)
Refaults		212664.00 (    +0.00%)	172409.00 (   -18.93%)
Restore refaults	 48861.00 (    +0.00%)	 80091.00 (   +63.91%)
Total paging IO		433167.00 (    +0.00%)	352701.00 (   -18.58%)

	Test #3: Overload

This next test is not about performance, but rather about the
predictability of the algorithm.  The current balancing behavior doesn't
always lead to comprehensible results, which makes performance analysis
and parameter tuning (swappiness e.g.) very difficult.

The test shows the balancing behavior under equivalent anon and file
input.  Anon and file sets are created of equal size (3/4 RAM), have the
same access patterns (a hot-cold gradient), and synchronized access rates.
Swappiness is raised from the default of 60 to 100 to indicate equal IO
cost between swap and cache.

With the vanilla balancing code, anon scans make up around 9% of the total
pages scanned, or a ~1:10 ratio.  This is a surprisingly skewed ratio, and
it's an outcome that is hard to explain given the input parameters to the
VM.

The new balancing model targets a 1:2 balance: All else being equal,
reclaiming a file page costs one page IO - the refault; reclaiming an anon
page costs two IOs - the swapout and the swapin.  In the test we observe a
~1:3 balance.

The scanned and paging IO numbers indicate that the anon LRU algorithm we
have in place right now does a slightly worse job at picking the coldest
pages compared to the file algorithm.  There is ongoing work to improve
this, like Joonsoo's anon workingset patches; however, it's difficult to
compare the two aging strategies when the balancing between them is
behaving unintuitively.

The slightly less efficient anon reclaim results in a deviation from the
optimal 1:2 scan ratio we would like to see here - however, 1:3 is much
closer to what we'd want to see in this test than the vanilla kernel's
aging of 10+ cache pages for every anonymous one:

			overload-100/5.7-rc5-mm-workingset	overload-100/5.7-rc5-mm-lrubalance-realfile
Scanned				 533633725.00 (    +0.00%)			  595687785.00 (   +11.63%)
Reclaimed			 494325440.00 (    +0.00%)			  518154380.00 (    +4.82%)
Reclaim efficiency %			92.63 (    +0.00%)				 86.98 (    -6.03%)
Scanned file			 484532894.00 (    +0.00%)			  456937722.00 (    -5.70%)
Scanned anon			  49100831.00 (    +0.00%)			  138750063.00 (  +182.58%)
Swapouts			   8096423.00 (    +0.00%)			   48982142.00 (  +504.98%)
Swapins				  10027384.00 (    +0.00%)			   6232504.00 (  +521.55%)
Refaults			 479819973.00 (    +0.00%)			  451309483.00 (    -5.94%)
Restore refaults		 426422087.00 (    +0.00%)			  399914067.00 (    -6.22%)
Total paging IO			 497943780.00 (    +0.00%)			  562616669.00 (   +12.99%)

	Test #4: Parallel IO

It's important to note that these patches only affect the situation where
the kernel has to reclaim workingset memory, which is usually a
transitionary period.  The vast majority of page reclaim occuring in a
system is from trimming the ever-expanding page cache.

These patches don't affect cache trimming behavior.  We never swap as long
as we only have use-once cache moving through the file LRU, we only
consider swapping when the cache is actively thrashing.

The following test demonstrates this.  It has an anon workingset that
takes up half of RAM and then writes a file that is twice the size of RAM
out to disk.

As the cache is funneled through the inactive file list, no anon pages are
scanned (aside from apparently some background noise of 10 pages):

					  5.7-rc5-mm		          5.7-rc5-mm-lrubalance
Scanned			    10714722.00 (    +0.00%)		       10723445.00 (    +0.08%)
Reclaimed		    10703596.00 (    +0.00%)		       10712166.00 (    +0.08%)
Reclaim efficiency %		  99.90 (    +0.00%)			     99.89 (    -0.00%)
Scanned file		    10714722.00 (    +0.00%)		       10723435.00 (    +0.08%)
Scanned anon			   0.00 (    +0.00%)			     10.00 (          )
Swapouts			   0.00 (    +0.00%)			      7.00 (          )
Swapins				   0.00 (    +0.00%)			      0.00 (    +0.00%)
Refaults			  92.00 (    +0.00%)			     41.00 (   -54.84%)
Restore refaults		   0.00 (    +0.00%)			      0.00 (    +0.00%)
Total paging IO			  92.00 (    +0.00%)			     48.00 (   -47.31%)

This patch (of 14):

Currently, THP are counted as single pages until they are split right
before being swapped out.  However, at that point the VM is already in the
middle of reclaim, and adjusting the LRU balance then is useless.

Always account THP by the number of basepages, and remove the fixup from
the splitting path.

Signed-off-by: Johannes Weiner <[email protected]>
Signed-off-by: Shakeel Butt <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Reviewed-by: Rik van Riel <[email protected]>
Reviewed-by: Shakeel Butt <[email protected]>
Acked-by: Michal Hocko <[email protected]>
Acked-by: Minchan Kim <[email protected]>
Cc: Joonsoo Kim <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
pull bot pushed a commit that referenced this pull request Jun 5, 2020
Implement rtas_call_reentrant() for reentrant rtas-calls:
"ibm,int-on", "ibm,int-off",ibm,get-xive" and  "ibm,set-xive".

On LoPAPR Version 1.1 (March 24, 2016), from 7.3.10.1 to 7.3.10.4,
items 2 and 3 say:

2 - For the PowerPC External Interrupt option: The * call must be
reentrant to the number of processors on the platform.
3 - For the PowerPC External Interrupt option: The * argument call
buffer for each simultaneous call must be physically unique.

So, these rtas-calls can be called in a lockless way, if using
a different buffer for each cpu doing such rtas call.

For this, it was suggested to add the buffer (struct rtas_args)
in the PACA struct, so each cpu can have it's own buffer.
The PACA struct received a pointer to rtas buffer, which is
allocated in the memory range available to rtas 32-bit.

Reentrant rtas calls are useful to avoid deadlocks in crashing,
where rtas-calls are needed, but some other thread crashed holding
the rtas.lock.

This is a backtrace of a deadlock from a kdump testing environment:

  #0 arch_spin_lock
  #1  lock_rtas ()
  #2  rtas_call (token=8204, nargs=1, nret=1, outputs=0x0)
  #3  ics_rtas_mask_real_irq (hw_irq=4100)
  #4  machine_kexec_mask_interrupts
  #5  default_machine_crash_shutdown
  #6  machine_crash_shutdown
  #7  __crash_kexec
  #8  crash_kexec
  #9  oops_end

Signed-off-by: Leonardo Bras <[email protected]>
[mpe: Move under #ifdef PSERIES to avoid build breakage]
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
pull bot pushed a commit that referenced this pull request Jun 6, 2020
To count stack usage of push {*, fp, ip, lr, pc} instruction in ARM,
if FRAME POINTER is enabled.
e.g. c01f0d48: e92ddff0 push {r4, r5, r6, r7, r8, r9, sl, fp, ip, lr, pc}

c01f0d50 <Y>:
c01f0d44:       e1a0c00d        mov     ip, sp
c01f0d48:       e92ddff0        push    {r4, r5, r6, r7, r8, r9, sl, fp, ip, lr, pc}
c01f0d4c:       e24cb004        sub     fp, ip, #4
c01f0d50:       e24dd094        sub     sp, sp, torvalds#448    ; 0x1C0

$ cat dump | scripts/checkstack.pl arm
0xc01f0d50 Y []:                                        448

added subroutine frame work for this.
After change:
0xc01f0d500 Y []:                                       492

Co-developed-by: Vaneet Narang <[email protected]>
Signed-off-by: Vaneet Narang <[email protected]>
Signed-off-by: Maninder Singh <[email protected]>
Signed-off-by: Masahiro Yamada <[email protected]>
pull bot pushed a commit that referenced this pull request Jun 12, 2020
The code in decode_config4() of arch/mips/kernel/cpu-probe.c

        asid_mask = MIPS_ENTRYHI_ASID;
        if (config4 & MIPS_CONF4_AE)
                asid_mask |= MIPS_ENTRYHI_ASIDX;
        set_cpu_asid_mask(c, asid_mask);

set asid_mask to cpuinfo->asid_mask.

So in order to support variable ASID_MASK, KVM_ENTRYHI_ASID should also
be changed to cpu_asid_mask(&boot_cpu_data).

Cc: Stable <[email protected]>  #4.9+
Reviewed-by: Aleksandar Markovic <[email protected]>
Signed-off-by: Xing Li <[email protected]>
[Huacai: Change current_cpu_data to boot_cpu_data for optimization]
Signed-off-by: Huacai Chen <[email protected]>
Message-Id: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
pull bot pushed a commit that referenced this pull request Jun 19, 2020
It's possible for a block driver to set logical block size to
a value greater than page size incorrectly; e.g. bcache takes
the value from the superblock, set by the user w/ make-bcache.

This causes a BUG/NULL pointer dereference in the path:

  __blkdev_get()
  -> set_init_blocksize() // set i_blkbits based on ...
     -> bdev_logical_block_size()
        -> queue_logical_block_size() // ... this value
  -> bdev_disk_changed()
     ...
     -> blkdev_readpage()
        -> block_read_full_page()
           -> create_page_buffers() // size = 1 << i_blkbits
              -> create_empty_buffers() // give size/take pointer
                 -> alloc_page_buffers() // return NULL
                 .. BUG!

Because alloc_page_buffers() is called with size > PAGE_SIZE,
thus it initializes head = NULL, skips the loop, return head;
then create_empty_buffers() gets (and uses) the NULL pointer.

This has been around longer than commit ad6bf88 ("block:
fix an integer overflow in logical block size"); however, it
increased the range of values that can trigger the issue.

Previously only 8k/16k/32k (on x86/4k page size) would do it,
as greater values overflow unsigned short to zero, and queue_
logical_block_size() would then use the default of 512.

Now the range with unsigned int is much larger, and users w/
the 512k value, which happened to be zero'ed previously and
work fine, started to hit this issue -- as the zero is gone,
and queue_logical_block_size() does return 512k (>PAGE_SIZE.)

Fix this by checking the bcache device's logical block size,
and if it's greater than page size, fallback to the backing/
cached device's logical page size.

This doesn't affect cache devices as those are still checked
for block/page size in read_super(); only the backing/cached
devices are not.

Apparently it's a regression from commit 2903381 ("bcache:
Take data offset from the bdev superblock."), moving the check
into BCACHE_SB_VERSION_CDEV only. Now that we have superblocks
of backing devices out there with this larger value, we cannot
refuse to load them (i.e., have a similar check in _BDEV.)

Ideally perhaps bcache should use all values from the backing
device (physical/logical/io_min block size)? But for now just
fix the problematic case.

Test-case:

    # IMG=/root/disk.img
    # dd if=/dev/zero of=$IMG bs=1 count=0 seek=1G
    # DEV=$(losetup --find --show $IMG)
    # make-bcache --bdev $DEV --block 8k
      < see dmesg >

Before:

    # uname -r
    5.7.0-rc7

    [   55.944046] BUG: kernel NULL pointer dereference, address: 0000000000000000
    ...
    [   55.949742] CPU: 3 PID: 610 Comm: bcache-register Not tainted 5.7.0-rc7 #4
    ...
    [   55.952281] RIP: 0010:create_empty_buffers+0x1a/0x100
    ...
    [   55.966434] Call Trace:
    [   55.967021]  create_page_buffers+0x48/0x50
    [   55.967834]  block_read_full_page+0x49/0x380
    [   55.972181]  do_read_cache_page+0x494/0x610
    [   55.974780]  read_part_sector+0x2d/0xaa
    [   55.975558]  read_lba+0x10e/0x1e0
    [   55.977904]  efi_partition+0x120/0x5a6
    [   55.980227]  blk_add_partitions+0x161/0x390
    [   55.982177]  bdev_disk_changed+0x61/0xd0
    [   55.982961]  __blkdev_get+0x350/0x490
    [   55.983715]  __device_add_disk+0x318/0x480
    [   55.984539]  bch_cached_dev_run+0xc5/0x270
    [   55.986010]  register_bcache.cold+0x122/0x179
    [   55.987628]  kernfs_fop_write+0xbc/0x1a0
    [   55.988416]  vfs_write+0xb1/0x1a0
    [   55.989134]  ksys_write+0x5a/0xd0
    [   55.989825]  do_syscall_64+0x43/0x140
    [   55.990563]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
    [   55.991519] RIP: 0033:0x7f7d60ba3154
    ...

After:

    # uname -r
    5.7.0.bcachelbspgsz

    [   31.672460] bcache: bcache_device_init() bcache0: sb/logical block size (8192) greater than page size (4096) falling back to device logical block size (512)
    [   31.675133] bcache: register_bdev() registered backing device loop0

    # grep ^ /sys/block/bcache0/queue/*_block_size
    /sys/block/bcache0/queue/logical_block_size:512
    /sys/block/bcache0/queue/physical_block_size:8192

Reported-by: Ryan Finnie <[email protected]>
Reported-by: Sebastian Marsching <[email protected]>
Signed-off-by: Mauricio Faria de Oliveira <[email protected]>
Signed-off-by: Coly Li <[email protected]>
Signed-off-by: Jens Axboe <[email protected]>
pull bot pushed a commit that referenced this pull request Jun 27, 2020
Commit 7e9f5e6 ("arm64: vdso: Add --eh-frame-hdr to ldflags") results
in a .eh_frame_hdr section for the vDSO, which in turn causes the libgcc
unwinder to unwind out of signal handlers using the .eh_frame information
populated by our .cfi directives. In conjunction with a4eb355
("arm64: vdso: Fix CFI directives in sigreturn trampoline"), this has
been shown to cause segmentation faults originating from within the
unwinder during thread cancellation:

 | Thread 14 "virtio-net-rx" received signal SIGSEGV, Segmentation fault.
 | 0x0000000000435e24 in uw_frame_state_for ()
 | (gdb) bt
 | #0  0x0000000000435e24 in uw_frame_state_for ()
 | #1  0x0000000000436e88 in _Unwind_ForcedUnwind_Phase2 ()
 | #2  0x00000000004374d8 in _Unwind_ForcedUnwind ()
 | #3  0x0000000000428400 in __pthread_unwind (buf=<optimized out>) at unwind.c:121
 | #4  0x0000000000429808 in __do_cancel () at ./pthreadP.h:304
 | #5  sigcancel_handler (sig=32, si=0xffff33c743f0, ctx=<optimized out>) at nptl-init.c:200
 | #6  sigcancel_handler (sig=<optimized out>, si=0xffff33c743f0, ctx=<optimized out>) at nptl-init.c:165
 | #7  <signal handler called>
 | #8  futex_wait_cancelable (private=0, expected=0, futex_word=0x3890b708) at ../sysdeps/unix/sysv/linux/futex-internal.h:88

After considerable bashing of heads, it appears that our CFI directives
for unwinding out of the sigreturn trampoline are only processed by libgcc
when both a .eh_frame_hdr section is present *and* the mysterious NOP is
covered by an entry in .eh_frame. With both of these now in place, it has
highlighted that our CFI directives are not comprehensive enough to
restore the stack pointer of the interrupted context. This results in libgcc
falling back to an arm64-specific unwinder after computing a bogus PC value
from the unwind tables. The unwinder promptly dereferences this bogus address
in an attempt to see if the pointed-to instruction sequence looks like
the sigreturn trampoline.

Restore the old unwind behaviour, which relied solely on heuristics in
the unwinder, by removing the .eh_frame_hdr section from the vDSO and
commenting out the insufficient CFI directives for now. Add comments to
explain the current, miserable state of affairs.

Cc: Tamas Zsoldos <[email protected]>
Cc: Szabolcs Nagy <[email protected]>
Cc: Catalin Marinas <[email protected]>
Cc: Daniel Kiss <[email protected]>
Acked-by: Dave Martin <[email protected]>
Reviewed-by: Vincenzo Frascino <[email protected]>
Reviewed-by: Ard Biesheuvel <[email protected]>
Reported-by: Ard Biesheuvel <[email protected]>
Signed-off-by: Will Deacon <[email protected]>
pull bot pushed a commit that referenced this pull request Jun 28, 2020
Suppose that, for unrelated reasons, FSF requests on behalf of recovery are
very slow and can run into the ERP timeout.

In the case at hand, we did adapter recovery to a large degree.  However
due to the slowness a LUN open is pending so the corresponding fc_rport
remains blocked.  After fast_io_fail_tmo we trigger close physical port
recovery for the port under which the LUN should have been opened.  The new
higher order port recovery dismisses the pending LUN open ERP action and
dismisses the pending LUN open FSF request.  Such dismissal decouples the
ERP action from the pending corresponding FSF request by setting
zfcp_fsf_req->erp_action to NULL (among other things)
[zfcp_erp_strategy_check_fsfreq()].

If now the ERP timeout for the pending open LUN request runs out, we must
not use zfcp_fsf_req->erp_action in the ERP timeout handler.  This is a
problem since v4.15 commit 75492a5 ("s390/scsi: Convert timers to use
timer_setup()"). Before that we intentionally only passed zfcp_erp_action
as context argument to zfcp_erp_timeout_handler().

Note: The lifetime of the corresponding zfcp_fsf_req object continues until
a (late) response or an (unrelated) adapter recovery.

Just like the regular response path ignores dismissed requests
[zfcp_fsf_req_complete() => zfcp_fsf_protstatus_eval() => return early] the
ERP timeout handler now needs to ignore dismissed requests.  So simply
return early in the ERP timeout handler if the FSF request is marked as
dismissed in its status flags.  To protect against the race where
zfcp_erp_strategy_check_fsfreq() dismisses and sets
zfcp_fsf_req->erp_action to NULL after our previous status flag check,
return early if zfcp_fsf_req->erp_action is NULL.  After all, the former
ERP action does not need to be woken up as that was already done as part of
the dismissal above [zfcp_erp_action_dismiss()].

This fixes the following panic due to kernel page fault in IRQ context:

Unable to handle kernel pointer dereference in virtual kernel address space
Failing address: 0000000000000000 TEID: 0000000000000483
Fault in home space mode while using kernel ASCE.
AS:000009859238c00b R2:00000e3e7ffd000b R3:00000e3e7ffcc007 S:00000e3e7ffd7000 P:000000000000013d
Oops: 0004 ilc:2 [#1] SMP
Modules linked in: ...
CPU: 82 PID: 311273 Comm: stress Kdump: loaded Tainted: G            E  X   ...
Hardware name: IBM 8561 T01 701 (LPAR)
Krnl PSW : 0404c00180000000 001fffff80549be0 (zfcp_erp_notify+0x40/0xc0 [zfcp])
           R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:0 PM:0 RI:0 EA:3
Krnl GPRS: 0000000000000080 00000e3d00000000 00000000000000f0 0000000000030000
           000000010028e700 000000000400a39c 000000010028e700 00000e3e7cf87e02
           0000000010000000 0700098591cb67f0 0000000000000000 0000000000000000
           0000033840e9a000 0000000000000000 001fffe008d6bc18 001fffe008d6bbc8
Krnl Code: 001fffff80549bd4: a7180000            lhi     %r1,0
           001fffff80549bd8: 4120a0f0            la      %r2,240(%r10)
          #001fffff80549bdc: a53e0003            llilh   %r3,3
          >001fffff80549be0: ba132000            cs      %r1,%r3,0(%r2)
           001fffff80549be4: a7740037            brc     7,1fffff80549c52
           001fffff80549be8: e320b0180004        lg      %r2,24(%r11)
           001fffff80549bee: e31020e00004        lg      %r1,224(%r2)
           001fffff80549bf4: 412020e0            la      %r2,224(%r2)
Call Trace:
 [<001fffff80549be0>] zfcp_erp_notify+0x40/0xc0 [zfcp]
 [<00000985915e26f0>] call_timer_fn+0x38/0x190
 [<00000985915e2944>] expire_timers+0xfc/0x190
 [<00000985915e2ac4>] run_timer_softirq+0xec/0x218
 [<0000098591ca7c4c>] __do_softirq+0x144/0x398
 [<00000985915110aa>] do_softirq_own_stack+0x72/0x88
 [<0000098591551b58>] irq_exit+0xb0/0xb8
 [<0000098591510c6a>] do_IRQ+0x82/0xb0
 [<0000098591ca7140>] ext_int_handler+0x128/0x12c
 [<0000098591722d98>] clear_subpage.constprop.13+0x38/0x60
([<000009859172ae4c>] clear_huge_page+0xec/0x250)
 [<000009859177e7a2>] do_huge_pmd_anonymous_page+0x32a/0x768
 [<000009859172a712>] __handle_mm_fault+0x88a/0x900
 [<000009859172a860>] handle_mm_fault+0xd8/0x1b0
 [<0000098591529ef6>] do_dat_exception+0x136/0x3e8
 [<0000098591ca6d34>] pgm_check_handler+0x1c8/0x220
Last Breaking-Event-Address:
 [<001fffff80549c88>] zfcp_erp_timeout_handler+0x10/0x18 [zfcp]
Kernel panic - not syncing: Fatal exception in interrupt

Link: https://lore.kernel.org/r/[email protected]
Fixes: 75492a5 ("s390/scsi: Convert timers to use timer_setup()")
Cc: <[email protected]> #4.15+
Reviewed-by: Julian Wiedmann <[email protected]>
Signed-off-by: Steffen Maier <[email protected]>
Signed-off-by: Martin K. Petersen <[email protected]>
pull bot pushed a commit that referenced this pull request Jul 11, 2020
Jakub Sitnicki says:

====================
This patch set prepares ground for link-based multi-prog attachment for
future netns attach types, with BPF_SK_LOOKUP attach type in mind [0].

Two changes are needed in order to attach and run a series of BPF programs:

  1) an bpf_prog_array of programs to run (patch #2), and
  2) a list of attached links to keep track of attachments (patch #3).

Nothing changes for BPF flow_dissector. Just as before only one program can
be attached to netns.

In v3 I've simplified patch #2 that introduces bpf_prog_array to take
advantage of the fact that it will hold at most one program for now.

In particular, I'm no longer using bpf_prog_array_copy. It turned out to be
less suitable for link operations than I thought as it fails to append the
same BPF program.

bpf_prog_array_replace_item is also gone, because we know we always want to
replace the first element in prog_array.

Naturally the code that handles bpf_prog_array will need change once
more when there is a program type that allows multi-prog attachment. But I
feel it will be better to do it gradually and present it together with
tests that actually exercise multi-prog code paths.

[0] https://lore.kernel.org/bpf/[email protected]/

v2 -> v3:
- Don't check if run_array is null in link update callback. (Martin)
- Allow updating the link with the same BPF program. (Andrii)
- Add patch #4 with a test for the above case.
- Kill bpf_prog_array_replace_item. Access the run_array directly.
- Switch from bpf_prog_array_copy() to bpf_prog_array_alloc(1, ...).
- Replace rcu_deref_protected & RCU_INIT_POINTER with rcu_replace_pointer.
- Drop Andrii's Ack from patch #2. Code changed.

v1 -> v2:

- Show with a (void) cast that bpf_prog_array_replace_item() return value
  is ignored on purpose. (Andrii)
- Explain why bpf-cgroup cannot replace programs in bpf_prog_array based
  on bpf_prog pointer comparison in patch #2 description. (Andrii)
====================

Signed-off-by: Alexei Starovoitov <[email protected]>
pull bot pushed a commit that referenced this pull request Jul 11, 2020
Enable promisc mode of PF, set VF link state to enable, and
run iperf of the VF, then do self test of the PF. The self test
will fail with a low frequency, and may cause a use-after-free
problem.

[   87.142126] selftest:000004a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
[   87.159722] ==================================================================
[   87.174187] BUG: KASAN: use-after-free in hex_dump_to_buffer+0x140/0x608
[   87.187600] Read of size 1 at addr ffff003b22828000 by task ethtool/1186
[   87.201012]
[   87.203978] CPU: 7 PID: 1186 Comm: ethtool Not tainted 5.5.0-rc4-gfd51c473-dirty #4
[   87.219306] Hardware name: Huawei TaiShan 2280 V2/BC82AMDA, BIOS TA BIOS 2280-A CS V2.B160.01 01/15/2020
[   87.238292] Call trace:
[   87.243173]  dump_backtrace+0x0/0x280
[   87.250491]  show_stack+0x24/0x30
[   87.257114]  dump_stack+0xe8/0x140
[   87.263911]  print_address_description.isra.8+0x70/0x380
[   87.274538]  __kasan_report+0x12c/0x230
[   87.282203]  kasan_report+0xc/0x18
[   87.288999]  __asan_load1+0x60/0x68
[   87.295969]  hex_dump_to_buffer+0x140/0x608
[   87.304332]  print_hex_dump+0x140/0x1e0
[   87.312000]  hns3_lb_check_skb_data+0x168/0x170
[   87.321060]  hns3_clean_rx_ring+0xa94/0xfe0
[   87.329422]  hns3_self_test+0x708/0x8c0

The length of packet sent by the selftest process is only
128 + 14 bytes, and the min buffer size of a BD is 256 bytes,
and the receive process will make sure the packet sent by
the selftest process is in the linear part, so only check
the linear part in hns3_lb_check_skb_data().

So fix this use-after-free by using skb_headlen() to dump
skb->data instead of skb->len.

Fixes: c39c4d9 ("net: hns3: Add mac loopback selftest support in hns3 driver")
Signed-off-by: Yonglong Liu <[email protected]>
Signed-off-by: Huazhong Tan <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
pull bot pushed a commit that referenced this pull request Jul 16, 2020
NULL pointer exception happens occasionally on serial output initiated
by login timeout.  This was reproduced only if kernel was built with
significant debugging options and EDMA driver is used with serial
console.

    col-vf50 login: root
    Password:
    Login timed out after 60 seconds.
    Unable to handle kernel NULL pointer dereference at virtual address 00000044
    Internal error: Oops: 5 [#1] ARM
    CPU: 0 PID: 157 Comm: login Not tainted 5.7.0-next-20200610-dirty #4
    Hardware name: Freescale Vybrid VF5xx/VF6xx (Device Tree)
      (fsl_edma_tx_handler) from [<8016eb10>] (__handle_irq_event_percpu+0x64/0x304)
      (__handle_irq_event_percpu) from [<8016eddc>] (handle_irq_event_percpu+0x2c/0x7c)
      (handle_irq_event_percpu) from [<8016ee64>] (handle_irq_event+0x38/0x5c)
      (handle_irq_event) from [<801729e4>] (handle_fasteoi_irq+0xa4/0x160)
      (handle_fasteoi_irq) from [<8016ddcc>] (generic_handle_irq+0x34/0x44)
      (generic_handle_irq) from [<8016e40c>] (__handle_domain_irq+0x54/0xa8)
      (__handle_domain_irq) from [<80508bc8>] (gic_handle_irq+0x4c/0x80)
      (gic_handle_irq) from [<80100af0>] (__irq_svc+0x70/0x98)
    Exception stack(0x8459fe80 to 0x8459fec8)
    fe80: 72286b00 e3359f64 00000001 0000412d a0070013 85c98840 85c98840 a0070013
    fea0: 8054e0d4 00000000 00000002 00000000 00000002 8459fed0 8081fbe8 8081fbec
    fec0: 60070013 ffffffff
      (__irq_svc) from [<8081fbec>] (_raw_spin_unlock_irqrestore+0x30/0x58)
      (_raw_spin_unlock_irqrestore) from [<8056cb48>] (uart_flush_buffer+0x88/0xf8)
      (uart_flush_buffer) from [<80554e60>] (tty_ldisc_hangup+0x38/0x1ac)
      (tty_ldisc_hangup) from [<8054c7f4>] (__tty_hangup+0x158/0x2bc)
      (__tty_hangup) from [<80557b90>] (disassociate_ctty.part.1+0x30/0x23c)
      (disassociate_ctty.part.1) from [<8011fc18>] (do_exit+0x580/0xba0)
      (do_exit) from [<801214f8>] (do_group_exit+0x3c/0xb4)
      (do_group_exit) from [<80121580>] (__wake_up_parent+0x0/0x14)

Issue looks like race condition between interrupt handler fsl_edma_tx_handler()
(called as result of fsl_edma_xfer_desc()) and terminating the transfer with
fsl_edma_terminate_all().

The fsl_edma_tx_handler() handles interrupt for a transfer with already freed
edesc and idle==true.

Fixes: d6be34f ("dma: Add Freescale eDMA engine driver support")
Signed-off-by: Krzysztof Kozlowski <[email protected]>
Reviewed-by: Robin Gong <[email protected]>
Cc: <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Vinod Koul <[email protected]>
pull bot pushed a commit that referenced this pull request Jul 16, 2020
devm_gpiod_get_index() doesn't return NULL but -ENOENT when the
requested GPIO doesn't exist,  leading to the following messages:

[    2.742468] gpiod_direction_input: invalid GPIO (errorpointer)
[    2.748147] can't set direction for gpio #2: -2
[    2.753081] gpiod_direction_input: invalid GPIO (errorpointer)
[    2.758724] can't set direction for gpio #3: -2
[    2.763666] gpiod_direction_output: invalid GPIO (errorpointer)
[    2.769394] can't set direction for gpio #4: -2
[    2.774341] gpiod_direction_input: invalid GPIO (errorpointer)
[    2.779981] can't set direction for gpio #5: -2
[    2.784545] ff000a20.serial: ttyCPM1 at MMIO 0xfff00a20 (irq = 39, base_baud = 8250000) is a CPM UART

Use devm_gpiod_get_index_optional() instead.

At the same time, handle the error case and properly exit
with an error.

Fixes: 97cbaf2 ("tty: serial: cpm_uart: Convert to use GPIO descriptors")
Cc: [email protected]
Cc: Linus Walleij <[email protected]>
Signed-off-by: Christophe Leroy <[email protected]>
Reviewed-by: Linus Walleij <[email protected]>
Link: https://lore.kernel.org/r/694a25fdce548c5ee8b060ef6a4b02746b8f25c0.1591986307.git.christophe.leroy@csgroup.eu
Signed-off-by: Greg Kroah-Hartman <[email protected]>
pull bot pushed a commit that referenced this pull request Jul 26, 2020
The `INSN_CONFIG` comedi instruction with sub-instruction code
`INSN_CONFIG_DIGITAL_TRIG` includes a base channel in `data[3]`. This is
used as a right shift amount for other bitmask values without being
checked.  Shift amounts greater than or equal to 32 will result in
undefined behavior.  Add code to deal with this, adjusting the checks
for invalid channels so that enabled channel bits that would have been
lost by shifting are also checked for validity.  Only channels 0 to 15
are valid.

Fixes: a8c66b6 ("staging: comedi: addi_apci_1500: rewrite the subdevice support functions")
Cc: <[email protected]> #4.0+: ef75e14: staging: comedi: verify array index is correct before using it
Cc: <[email protected]> #4.0+
Signed-off-by: Ian Abbott <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Greg Kroah-Hartman <[email protected]>
pull bot pushed a commit that referenced this pull request Aug 2, 2020
I compiled with AddressSanitizer and I had these memory leaks while I
was using the tep_parse_format function:

    Direct leak of 28 byte(s) in 4 object(s) allocated from:
        #0 0x7fb07db49ffe in __interceptor_realloc (/lib/x86_64-linux-gnu/libasan.so.5+0x10dffe)
        #1 0x7fb07a724228 in extend_token /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:985
        #2 0x7fb07a724c21 in __read_token /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:1140
        #3 0x7fb07a724f78 in read_token /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:1206
        #4 0x7fb07a725191 in __read_expect_type /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:1291
        #5 0x7fb07a7251df in read_expect_type /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:1299
        #6 0x7fb07a72e6c8 in process_dynamic_array_len /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:2849
        #7 0x7fb07a7304b8 in process_function /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:3161
        #8 0x7fb07a730900 in process_arg_token /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:3207
        #9 0x7fb07a727c0b in process_arg /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:1786
        #10 0x7fb07a731080 in event_read_print_args /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:3285
        #11 0x7fb07a731722 in event_read_print /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:3369
        #12 0x7fb07a740054 in __tep_parse_format /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:6335
        #13 0x7fb07a74047a in __parse_event /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:6389
        #14 0x7fb07a740536 in tep_parse_format /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:6431
        #15 0x7fb07a785acf in parse_event ../../../src/fs-src/fs.c:251
        #16 0x7fb07a785ccd in parse_systems ../../../src/fs-src/fs.c:284
        #17 0x7fb07a786fb3 in read_metadata ../../../src/fs-src/fs.c:593
        #18 0x7fb07a78760e in ftrace_fs_source_init ../../../src/fs-src/fs.c:727
        #19 0x7fb07d90c19c in add_component_with_init_method_data ../../../../src/lib/graph/graph.c:1048
        #20 0x7fb07d90c87b in add_source_component_with_initialize_method_data ../../../../src/lib/graph/graph.c:1127
        #21 0x7fb07d90c92a in bt_graph_add_source_component ../../../../src/lib/graph/graph.c:1152
        #22 0x55db11aa632e in cmd_run_ctx_create_components_from_config_components ../../../src/cli/babeltrace2.c:2252
        #23 0x55db11aa6fda in cmd_run_ctx_create_components ../../../src/cli/babeltrace2.c:2347
        #24 0x55db11aa780c in cmd_run ../../../src/cli/babeltrace2.c:2461
        #25 0x55db11aa8a7d in main ../../../src/cli/babeltrace2.c:2673
        #26 0x7fb07d5460b2 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x270b2)

The token variable in the process_dynamic_array_len function is
allocated in the read_expect_type function, but is not freed before
calling the read_token function.

Free the token variable before calling read_token in order to plug the
leak.

Signed-off-by: Philippe Duplessis-Guindon <[email protected]>
Reviewed-by: Steven Rostedt (VMware) <[email protected]>
Link: https://lore.kernel.org/linux-trace-devel/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
pull bot pushed a commit that referenced this pull request Aug 3, 2020
There's long existed a lockdep splat because we open our bdev's under
the ->device_list_mutex at mount time, which acquires the bd_mutex.
Usually this goes unnoticed, but if you do loopback devices at all
suddenly the bd_mutex comes with a whole host of other dependencies,
which results in the splat when you mount a btrfs file system.

======================================================
WARNING: possible circular locking dependency detected
5.8.0-0.rc3.1.fc33.x86_64+debug #1 Not tainted
------------------------------------------------------
systemd-journal/509 is trying to acquire lock:
ffff970831f84db0 (&fs_info->reloc_mutex){+.+.}-{3:3}, at: btrfs_record_root_in_trans+0x44/0x70 [btrfs]

but task is already holding lock:
ffff97083144d598 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x59/0x560 [btrfs]

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

 -> #6 (sb_pagefaults){.+.+}-{0:0}:
       __sb_start_write+0x13e/0x220
       btrfs_page_mkwrite+0x59/0x560 [btrfs]
       do_page_mkwrite+0x4f/0x130
       do_wp_page+0x3b0/0x4f0
       handle_mm_fault+0xf47/0x1850
       do_user_addr_fault+0x1fc/0x4b0
       exc_page_fault+0x88/0x300
       asm_exc_page_fault+0x1e/0x30

 -> #5 (&mm->mmap_lock#2){++++}-{3:3}:
       __might_fault+0x60/0x80
       _copy_from_user+0x20/0xb0
       get_sg_io_hdr+0x9a/0xb0
       scsi_cmd_ioctl+0x1ea/0x2f0
       cdrom_ioctl+0x3c/0x12b4
       sr_block_ioctl+0xa4/0xd0
       block_ioctl+0x3f/0x50
       ksys_ioctl+0x82/0xc0
       __x64_sys_ioctl+0x16/0x20
       do_syscall_64+0x52/0xb0
       entry_SYSCALL_64_after_hwframe+0x44/0xa9

 -> #4 (&cd->lock){+.+.}-{3:3}:
       __mutex_lock+0x7b/0x820
       sr_block_open+0xa2/0x180
       __blkdev_get+0xdd/0x550
       blkdev_get+0x38/0x150
       do_dentry_open+0x16b/0x3e0
       path_openat+0x3c9/0xa00
       do_filp_open+0x75/0x100
       do_sys_openat2+0x8a/0x140
       __x64_sys_openat+0x46/0x70
       do_syscall_64+0x52/0xb0
       entry_SYSCALL_64_after_hwframe+0x44/0xa9

 -> #3 (&bdev->bd_mutex){+.+.}-{3:3}:
       __mutex_lock+0x7b/0x820
       __blkdev_get+0x6a/0x550
       blkdev_get+0x85/0x150
       blkdev_get_by_path+0x2c/0x70
       btrfs_get_bdev_and_sb+0x1b/0xb0 [btrfs]
       open_fs_devices+0x88/0x240 [btrfs]
       btrfs_open_devices+0x92/0xa0 [btrfs]
       btrfs_mount_root+0x250/0x490 [btrfs]
       legacy_get_tree+0x30/0x50
       vfs_get_tree+0x28/0xc0
       vfs_kern_mount.part.0+0x71/0xb0
       btrfs_mount+0x119/0x380 [btrfs]
       legacy_get_tree+0x30/0x50
       vfs_get_tree+0x28/0xc0
       do_mount+0x8c6/0xca0
       __x64_sys_mount+0x8e/0xd0
       do_syscall_64+0x52/0xb0
       entry_SYSCALL_64_after_hwframe+0x44/0xa9

 -> #2 (&fs_devs->device_list_mutex){+.+.}-{3:3}:
       __mutex_lock+0x7b/0x820
       btrfs_run_dev_stats+0x36/0x420 [btrfs]
       commit_cowonly_roots+0x91/0x2d0 [btrfs]
       btrfs_commit_transaction+0x4e6/0x9f0 [btrfs]
       btrfs_sync_file+0x38a/0x480 [btrfs]
       __x64_sys_fdatasync+0x47/0x80
       do_syscall_64+0x52/0xb0
       entry_SYSCALL_64_after_hwframe+0x44/0xa9

 -> #1 (&fs_info->tree_log_mutex){+.+.}-{3:3}:
       __mutex_lock+0x7b/0x820
       btrfs_commit_transaction+0x48e/0x9f0 [btrfs]
       btrfs_sync_file+0x38a/0x480 [btrfs]
       __x64_sys_fdatasync+0x47/0x80
       do_syscall_64+0x52/0xb0
       entry_SYSCALL_64_after_hwframe+0x44/0xa9

 -> #0 (&fs_info->reloc_mutex){+.+.}-{3:3}:
       __lock_acquire+0x1241/0x20c0
       lock_acquire+0xb0/0x400
       __mutex_lock+0x7b/0x820
       btrfs_record_root_in_trans+0x44/0x70 [btrfs]
       start_transaction+0xd2/0x500 [btrfs]
       btrfs_dirty_inode+0x44/0xd0 [btrfs]
       file_update_time+0xc6/0x120
       btrfs_page_mkwrite+0xda/0x560 [btrfs]
       do_page_mkwrite+0x4f/0x130
       do_wp_page+0x3b0/0x4f0
       handle_mm_fault+0xf47/0x1850
       do_user_addr_fault+0x1fc/0x4b0
       exc_page_fault+0x88/0x300
       asm_exc_page_fault+0x1e/0x30

other info that might help us debug this:

Chain exists of:
  &fs_info->reloc_mutex --> &mm->mmap_lock#2 --> sb_pagefaults

Possible unsafe locking scenario:

     CPU0                    CPU1
     ----                    ----
 lock(sb_pagefaults);
                             lock(&mm->mmap_lock#2);
                             lock(sb_pagefaults);
 lock(&fs_info->reloc_mutex);

 *** DEADLOCK ***

3 locks held by systemd-journal/509:
 #0: ffff97083bdec8b8 (&mm->mmap_lock#2){++++}-{3:3}, at: do_user_addr_fault+0x12e/0x4b0
 #1: ffff97083144d598 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x59/0x560 [btrfs]
 #2: ffff97083144d6a8 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x3f8/0x500 [btrfs]

stack backtrace:
CPU: 0 PID: 509 Comm: systemd-journal Not tainted 5.8.0-0.rc3.1.fc33.x86_64+debug #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
 dump_stack+0x92/0xc8
 check_noncircular+0x134/0x150
 __lock_acquire+0x1241/0x20c0
 lock_acquire+0xb0/0x400
 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs]
 ? lock_acquire+0xb0/0x400
 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs]
 __mutex_lock+0x7b/0x820
 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs]
 ? kvm_sched_clock_read+0x14/0x30
 ? sched_clock+0x5/0x10
 ? sched_clock_cpu+0xc/0xb0
 btrfs_record_root_in_trans+0x44/0x70 [btrfs]
 start_transaction+0xd2/0x500 [btrfs]
 btrfs_dirty_inode+0x44/0xd0 [btrfs]
 file_update_time+0xc6/0x120
 btrfs_page_mkwrite+0xda/0x560 [btrfs]
 ? sched_clock+0x5/0x10
 do_page_mkwrite+0x4f/0x130
 do_wp_page+0x3b0/0x4f0
 handle_mm_fault+0xf47/0x1850
 do_user_addr_fault+0x1fc/0x4b0
 exc_page_fault+0x88/0x300
 ? asm_exc_page_fault+0x8/0x30
 asm_exc_page_fault+0x1e/0x30
RIP: 0033:0x7fa3972fdbfe
Code: Bad RIP value.

Fix this by not holding the ->device_list_mutex at this point.  The
device_list_mutex exists to protect us from modifying the device list
while the file system is running.

However it can also be modified by doing a scan on a device.  But this
action is specifically protected by the uuid_mutex, which we are holding
here.  We cannot race with opening at this point because we have the
->s_mount lock held during the mount.  Not having the
->device_list_mutex here is perfectly safe as we're not going to change
the devices at this point.

CC: [email protected] # 4.19+
Signed-off-by: Josef Bacik <[email protected]>
Reviewed-by: David Sterba <[email protected]>
[ add some comments ]
Signed-off-by: David Sterba <[email protected]>
pull bot pushed a commit that referenced this pull request Aug 3, 2020
When running with -o enospc_debug you can get the following splat if one
of the dump_space_info's trip

  ======================================================
  WARNING: possible circular locking dependency detected
  5.8.0-rc5+ #20 Tainted: G           OE
  ------------------------------------------------------
  dd/563090 is trying to acquire lock:
  ffff9e7dbf4f1e18 (&ctl->tree_lock){+.+.}-{2:2}, at: btrfs_dump_free_space+0x2b/0xa0 [btrfs]

  but task is already holding lock:
  ffff9e7e2284d428 (&cache->lock){+.+.}-{2:2}, at: btrfs_dump_space_info+0xaa/0x120 [btrfs]

  which lock already depends on the new lock.

  the existing dependency chain (in reverse order) is:

  -> #3 (&cache->lock){+.+.}-{2:2}:
	 _raw_spin_lock+0x25/0x30
	 btrfs_add_reserved_bytes+0x3c/0x3c0 [btrfs]
	 find_free_extent+0x7ef/0x13b0 [btrfs]
	 btrfs_reserve_extent+0x9b/0x180 [btrfs]
	 btrfs_alloc_tree_block+0xc1/0x340 [btrfs]
	 alloc_tree_block_no_bg_flush+0x4a/0x60 [btrfs]
	 __btrfs_cow_block+0x122/0x530 [btrfs]
	 btrfs_cow_block+0x106/0x210 [btrfs]
	 commit_cowonly_roots+0x55/0x300 [btrfs]
	 btrfs_commit_transaction+0x4ed/0xac0 [btrfs]
	 sync_filesystem+0x74/0x90
	 generic_shutdown_super+0x22/0x100
	 kill_anon_super+0x14/0x30
	 btrfs_kill_super+0x12/0x20 [btrfs]
	 deactivate_locked_super+0x36/0x70
	 cleanup_mnt+0x104/0x160
	 task_work_run+0x5f/0x90
	 __prepare_exit_to_usermode+0x1bd/0x1c0
	 do_syscall_64+0x5e/0xb0
	 entry_SYSCALL_64_after_hwframe+0x44/0xa9

  -> #2 (&space_info->lock){+.+.}-{2:2}:
	 _raw_spin_lock+0x25/0x30
	 btrfs_block_rsv_release+0x1a6/0x3f0 [btrfs]
	 btrfs_inode_rsv_release+0x4f/0x170 [btrfs]
	 btrfs_clear_delalloc_extent+0x155/0x480 [btrfs]
	 clear_state_bit+0x81/0x1a0 [btrfs]
	 __clear_extent_bit+0x25c/0x5d0 [btrfs]
	 clear_extent_bit+0x15/0x20 [btrfs]
	 btrfs_invalidatepage+0x2b7/0x3c0 [btrfs]
	 truncate_cleanup_page+0x47/0xe0
	 truncate_inode_pages_range+0x238/0x840
	 truncate_pagecache+0x44/0x60
	 btrfs_setattr+0x202/0x5e0 [btrfs]
	 notify_change+0x33b/0x490
	 do_truncate+0x76/0xd0
	 path_openat+0x687/0xa10
	 do_filp_open+0x91/0x100
	 do_sys_openat2+0x215/0x2d0
	 do_sys_open+0x44/0x80
	 do_syscall_64+0x52/0xb0
	 entry_SYSCALL_64_after_hwframe+0x44/0xa9

  -> #1 (&tree->lock#2){+.+.}-{2:2}:
	 _raw_spin_lock+0x25/0x30
	 find_first_extent_bit+0x32/0x150 [btrfs]
	 write_pinned_extent_entries.isra.0+0xc5/0x100 [btrfs]
	 __btrfs_write_out_cache+0x172/0x480 [btrfs]
	 btrfs_write_out_cache+0x7a/0xf0 [btrfs]
	 btrfs_write_dirty_block_groups+0x286/0x3b0 [btrfs]
	 commit_cowonly_roots+0x245/0x300 [btrfs]
	 btrfs_commit_transaction+0x4ed/0xac0 [btrfs]
	 close_ctree+0xf9/0x2f5 [btrfs]
	 generic_shutdown_super+0x6c/0x100
	 kill_anon_super+0x14/0x30
	 btrfs_kill_super+0x12/0x20 [btrfs]
	 deactivate_locked_super+0x36/0x70
	 cleanup_mnt+0x104/0x160
	 task_work_run+0x5f/0x90
	 __prepare_exit_to_usermode+0x1bd/0x1c0
	 do_syscall_64+0x5e/0xb0
	 entry_SYSCALL_64_after_hwframe+0x44/0xa9

  -> #0 (&ctl->tree_lock){+.+.}-{2:2}:
	 __lock_acquire+0x1240/0x2460
	 lock_acquire+0xab/0x360
	 _raw_spin_lock+0x25/0x30
	 btrfs_dump_free_space+0x2b/0xa0 [btrfs]
	 btrfs_dump_space_info+0xf4/0x120 [btrfs]
	 btrfs_reserve_extent+0x176/0x180 [btrfs]
	 __btrfs_prealloc_file_range+0x145/0x550 [btrfs]
	 cache_save_setup+0x28d/0x3b0 [btrfs]
	 btrfs_start_dirty_block_groups+0x1fc/0x4f0 [btrfs]
	 btrfs_commit_transaction+0xcc/0xac0 [btrfs]
	 btrfs_alloc_data_chunk_ondemand+0x162/0x4c0 [btrfs]
	 btrfs_check_data_free_space+0x4c/0xa0 [btrfs]
	 btrfs_buffered_write.isra.0+0x19b/0x740 [btrfs]
	 btrfs_file_write_iter+0x3cf/0x610 [btrfs]
	 new_sync_write+0x11e/0x1b0
	 vfs_write+0x1c9/0x200
	 ksys_write+0x68/0xe0
	 do_syscall_64+0x52/0xb0
	 entry_SYSCALL_64_after_hwframe+0x44/0xa9

  other info that might help us debug this:

  Chain exists of:
    &ctl->tree_lock --> &space_info->lock --> &cache->lock

   Possible unsafe locking scenario:

	 CPU0                    CPU1
	 ----                    ----
    lock(&cache->lock);
				 lock(&space_info->lock);
				 lock(&cache->lock);
    lock(&ctl->tree_lock);

   *** DEADLOCK ***

  6 locks held by dd/563090:
   #0: ffff9e7e21d18448 (sb_writers#14){.+.+}-{0:0}, at: vfs_write+0x195/0x200
   #1: ffff9e7dd0410ed8 (&sb->s_type->i_mutex_key#19){++++}-{3:3}, at: btrfs_file_write_iter+0x86/0x610 [btrfs]
   #2: ffff9e7e21d18638 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x40b/0x5b0 [btrfs]
   #3: ffff9e7e1f05d688 (&cur_trans->cache_write_mutex){+.+.}-{3:3}, at: btrfs_start_dirty_block_groups+0x158/0x4f0 [btrfs]
   #4: ffff9e7e2284ddb8 (&space_info->groups_sem){++++}-{3:3}, at: btrfs_dump_space_info+0x69/0x120 [btrfs]
   #5: ffff9e7e2284d428 (&cache->lock){+.+.}-{2:2}, at: btrfs_dump_space_info+0xaa/0x120 [btrfs]

  stack backtrace:
  CPU: 3 PID: 563090 Comm: dd Tainted: G           OE     5.8.0-rc5+ #20
  Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./890FX Deluxe5, BIOS P1.40 05/03/2011
  Call Trace:
   dump_stack+0x96/0xd0
   check_noncircular+0x162/0x180
   __lock_acquire+0x1240/0x2460
   ? wake_up_klogd.part.0+0x30/0x40
   lock_acquire+0xab/0x360
   ? btrfs_dump_free_space+0x2b/0xa0 [btrfs]
   _raw_spin_lock+0x25/0x30
   ? btrfs_dump_free_space+0x2b/0xa0 [btrfs]
   btrfs_dump_free_space+0x2b/0xa0 [btrfs]
   btrfs_dump_space_info+0xf4/0x120 [btrfs]
   btrfs_reserve_extent+0x176/0x180 [btrfs]
   __btrfs_prealloc_file_range+0x145/0x550 [btrfs]
   ? btrfs_qgroup_reserve_data+0x1d/0x60 [btrfs]
   cache_save_setup+0x28d/0x3b0 [btrfs]
   btrfs_start_dirty_block_groups+0x1fc/0x4f0 [btrfs]
   btrfs_commit_transaction+0xcc/0xac0 [btrfs]
   ? start_transaction+0xe0/0x5b0 [btrfs]
   btrfs_alloc_data_chunk_ondemand+0x162/0x4c0 [btrfs]
   btrfs_check_data_free_space+0x4c/0xa0 [btrfs]
   btrfs_buffered_write.isra.0+0x19b/0x740 [btrfs]
   ? ktime_get_coarse_real_ts64+0xa8/0xd0
   ? trace_hardirqs_on+0x1c/0xe0
   btrfs_file_write_iter+0x3cf/0x610 [btrfs]
   new_sync_write+0x11e/0x1b0
   vfs_write+0x1c9/0x200
   ksys_write+0x68/0xe0
   do_syscall_64+0x52/0xb0
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

This is because we're holding the block_group->lock while trying to dump
the free space cache.  However we don't need this lock, we just need it
to read the values for the printk, so move the free space cache dumping
outside of the block group lock.

Signed-off-by: Josef Bacik <[email protected]>
Reviewed-by: David Sterba <[email protected]>
Signed-off-by: David Sterba <[email protected]>
pull bot pushed a commit that referenced this pull request Aug 5, 2020
The following deadlock was captured. The first process is holding 'kernfs_mutex'
and hung by io. The io was staging in 'r1conf.pending_bio_list' of raid1 device,
this pending bio list would be flushed by second process 'md127_raid1', but
it was hung by 'kernfs_mutex'. Using sysfs_notify_dirent_safe() to replace
sysfs_notify() can fix it. There were other sysfs_notify() invoked from io
path, removed all of them.

 PID: 40430  TASK: ffff8ee9c8c65c40  CPU: 29  COMMAND: "probe_file"
  #0 [ffffb87c4df37260] __schedule at ffffffff9a8678ec
  #1 [ffffb87c4df372f8] schedule at ffffffff9a867f06
  #2 [ffffb87c4df37310] io_schedule at ffffffff9a0c73e6
  #3 [ffffb87c4df37328] __dta___xfs_iunpin_wait_3443 at ffffffffc03a4057 [xfs]
  #4 [ffffb87c4df373a0] xfs_iunpin_wait at ffffffffc03a6c79 [xfs]
  #5 [ffffb87c4df373b0] __dta_xfs_reclaim_inode_3357 at ffffffffc039a46c [xfs]
  #6 [ffffb87c4df37400] xfs_reclaim_inodes_ag at ffffffffc039a8b6 [xfs]
  #7 [ffffb87c4df37590] xfs_reclaim_inodes_nr at ffffffffc039bb33 [xfs]
  #8 [ffffb87c4df375b0] xfs_fs_free_cached_objects at ffffffffc03af0e9 [xfs]
  #9 [ffffb87c4df375c0] super_cache_scan at ffffffff9a287ec7
 #10 [ffffb87c4df37618] shrink_slab at ffffffff9a1efd93
 #11 [ffffb87c4df37700] shrink_node at ffffffff9a1f5968
 #12 [ffffb87c4df37788] do_try_to_free_pages at ffffffff9a1f5ea2
 #13 [ffffb87c4df377f0] try_to_free_mem_cgroup_pages at ffffffff9a1f6445
 #14 [ffffb87c4df37880] try_charge at ffffffff9a26cc5f
 #15 [ffffb87c4df37920] memcg_kmem_charge_memcg at ffffffff9a270f6a
 #16 [ffffb87c4df37958] new_slab at ffffffff9a251430
 #17 [ffffb87c4df379c0] ___slab_alloc at ffffffff9a251c85
 #18 [ffffb87c4df37a80] __slab_alloc at ffffffff9a25635d
 #19 [ffffb87c4df37ac0] kmem_cache_alloc at ffffffff9a251f89
 #20 [ffffb87c4df37b00] alloc_inode at ffffffff9a2a2b10
 #21 [ffffb87c4df37b20] iget_locked at ffffffff9a2a4854
 #22 [ffffb87c4df37b60] kernfs_get_inode at ffffffff9a311377
 #23 [ffffb87c4df37b80] kernfs_iop_lookup at ffffffff9a311e2b
 #24 [ffffb87c4df37ba8] lookup_slow at ffffffff9a290118
 #25 [ffffb87c4df37c10] walk_component at ffffffff9a291e83
 #26 [ffffb87c4df37c78] path_lookupat at ffffffff9a293619
 #27 [ffffb87c4df37cd8] filename_lookup at ffffffff9a2953af
 #28 [ffffb87c4df37de8] user_path_at_empty at ffffffff9a295566
 #29 [ffffb87c4df37e10] vfs_statx at ffffffff9a289787
 #30 [ffffb87c4df37e70] SYSC_newlstat at ffffffff9a289d5d
 #31 [ffffb87c4df37f18] sys_newlstat at ffffffff9a28a60e
 #32 [ffffb87c4df37f28] do_syscall_64 at ffffffff9a003949
 #33 [ffffb87c4df37f50] entry_SYSCALL_64_after_hwframe at ffffffff9aa001ad
     RIP: 00007f617a5f2905  RSP: 00007f607334f838  RFLAGS: 00000246
     RAX: ffffffffffffffda  RBX: 00007f6064044b20  RCX: 00007f617a5f2905
     RDX: 00007f6064044b20  RSI: 00007f6064044b20  RDI: 00007f6064005890
     RBP: 00007f6064044aa0   R8: 0000000000000030   R9: 000000000000011c
     R10: 0000000000000013  R11: 0000000000000246  R12: 00007f606417e6d0
     R13: 00007f6064044aa0  R14: 00007f6064044b10  R15: 00000000ffffffff
     ORIG_RAX: 0000000000000006  CS: 0033  SS: 002b

 PID: 927    TASK: ffff8f15ac5dbd80  CPU: 42  COMMAND: "md127_raid1"
  #0 [ffffb87c4df07b28] __schedule at ffffffff9a8678ec
  #1 [ffffb87c4df07bc0] schedule at ffffffff9a867f06
  #2 [ffffb87c4df07bd8] schedule_preempt_disabled at ffffffff9a86825e
  #3 [ffffb87c4df07be8] __mutex_lock at ffffffff9a869bcc
  #4 [ffffb87c4df07ca0] __mutex_lock_slowpath at ffffffff9a86a013
  #5 [ffffb87c4df07cb0] mutex_lock at ffffffff9a86a04f
  #6 [ffffb87c4df07cc8] kernfs_find_and_get_ns at ffffffff9a311d83
  #7 [ffffb87c4df07cf0] sysfs_notify at ffffffff9a314b3a
  #8 [ffffb87c4df07d18] md_update_sb at ffffffff9a688696
  #9 [ffffb87c4df07d98] md_update_sb at ffffffff9a6886d5
 #10 [ffffb87c4df07da8] md_check_recovery at ffffffff9a68ad9c
 #11 [ffffb87c4df07dd0] raid1d at ffffffffc01f0375 [raid1]
 #12 [ffffb87c4df07ea0] md_thread at ffffffff9a680348
 #13 [ffffb87c4df07f08] kthread at ffffffff9a0b8005
 #14 [ffffb87c4df07f50] ret_from_fork at ffffffff9aa00344

Signed-off-by: Junxiao Bi <[email protected]>
Signed-off-by: Song Liu <[email protected]>
pull bot pushed a commit that referenced this pull request Aug 5, 2020
During initialization of the DASD DIAG driver a request is issued
that has a bio structure that resides on the stack. With virtually
mapped kernel stacks this bio address might be in virtual storage
which is unsuitable for usage with the diag250 call.
In this case the device can not be set online using the DIAG
discipline and fails with -EOPNOTSUP.
In the system journal the following error message is presented:

dasd: X.X.XXXX Setting the DASD online with discipline DIAG failed
with rc=-95

Fix by allocating the bio structure instead of having it on the stack.

Fixes: ce3dc44 ("s390: add support for virtually mapped kernel stacks")
Signed-off-by: Stefan Haberland <[email protected]>
Reviewed-by: Peter Oberparleiter <[email protected]>
Cc: [email protected] #4.20
Signed-off-by: Jens Axboe <[email protected]>
pull bot pushed a commit that referenced this pull request Aug 11, 2020
This patch is to fix a crash:

 #3 [ffffb6580689f898] oops_end at ffffffffa2835bc2
 #4 [ffffb6580689f8b8] no_context at ffffffffa28766e7
 #5 [ffffb6580689f920] async_page_fault at ffffffffa320135e
    [exception RIP: f2fs_is_compressed_page+34]
    RIP: ffffffffa2ba83a2  RSP: ffffb6580689f9d8  RFLAGS: 00010213
    RAX: 0000000000000001  RBX: fffffc0f50b34bc0  RCX: 0000000000002122
    RDX: 0000000000002123  RSI: 0000000000000c00  RDI: fffffc0f50b34bc0
    RBP: ffff97e815a40178   R8: 0000000000000000   R9: ffff97e83ffc9000
    R10: 0000000000032300  R11: 0000000000032380  R12: ffffb6580689fa38
    R13: fffffc0f50b34bc0  R14: ffff97e825cbd000  R15: 0000000000000c00
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
 #6 [ffffb6580689f9d8] __is_cp_guaranteed at ffffffffa2b7ea98
 #7 [ffffb6580689f9f0] f2fs_submit_page_write at ffffffffa2b81a69
 #8 [ffffb6580689fa30] f2fs_do_write_meta_page at ffffffffa2b99777
 #9 [ffffb6580689fae0] __f2fs_write_meta_page at ffffffffa2b75f1a
 #10 [ffffb6580689fb18] f2fs_sync_meta_pages at ffffffffa2b77466
 #11 [ffffb6580689fc98] do_checkpoint at ffffffffa2b78e46
 #12 [ffffb6580689fd88] f2fs_write_checkpoint at ffffffffa2b79c29
 #13 [ffffb6580689fdd0] f2fs_sync_fs at ffffffffa2b69d95
 #14 [ffffb6580689fe20] sync_filesystem at ffffffffa2ad2574
 #15 [ffffb6580689fe30] generic_shutdown_super at ffffffffa2a9b582
 #16 [ffffb6580689fe48] kill_block_super at ffffffffa2a9b6d1
 #17 [ffffb6580689fe60] kill_f2fs_super at ffffffffa2b6abe1
 #18 [ffffb6580689fea0] deactivate_locked_super at ffffffffa2a9afb6
 #19 [ffffb6580689feb8] cleanup_mnt at ffffffffa2abcad4
 #20 [ffffb6580689fee0] task_work_run at ffffffffa28bca28
 #21 [ffffb6580689ff00] exit_to_usermode_loop at ffffffffa28050b7
 #22 [ffffb6580689ff38] do_syscall_64 at ffffffffa280560e
 #23 [ffffb6580689ff50] entry_SYSCALL_64_after_hwframe at ffffffffa320008c

This occurred when umount f2fs if enable F2FS_FS_COMPRESSION
with F2FS_IO_TRACE. Fixes it by adding IS_IO_TRACED_PAGE to check
validity of pid for page_private.

Signed-off-by: Yu Changchun <[email protected]>
Reviewed-by: Chao Yu <[email protected]>
Signed-off-by: Jaegeuk Kim <[email protected]>
pull bot pushed a commit that referenced this pull request Aug 11, 2020
https://bugzilla.kernel.org/show_bug.cgi?id=208565

PID: 257    TASK: ecdd0000  CPU: 0   COMMAND: "init"
  #0 [<c0b420ec>] (__schedule) from [<c0b423c8>]
  #1 [<c0b423c8>] (schedule) from [<c0b459d4>]
  #2 [<c0b459d4>] (rwsem_down_read_failed) from [<c0b44fa0>]
  #3 [<c0b44fa0>] (down_read) from [<c044233c>]
  #4 [<c044233c>] (f2fs_truncate_blocks) from [<c0442890>]
  #5 [<c0442890>] (f2fs_truncate) from [<c044d408>]
  #6 [<c044d408>] (f2fs_evict_inode) from [<c030be18>]
  #7 [<c030be18>] (evict) from [<c030a558>]
  #8 [<c030a558>] (iput) from [<c047c600>]
  #9 [<c047c600>] (f2fs_sync_node_pages) from [<c0465414>]
 #10 [<c0465414>] (f2fs_write_checkpoint) from [<c04575f4>]
 #11 [<c04575f4>] (f2fs_sync_fs) from [<c0441918>]
 #12 [<c0441918>] (f2fs_do_sync_file) from [<c0441098>]
 #13 [<c0441098>] (f2fs_sync_file) from [<c0323fa0>]
 #14 [<c0323fa0>] (vfs_fsync_range) from [<c0324294>]
 #15 [<c0324294>] (do_fsync) from [<c0324014>]
 #16 [<c0324014>] (sys_fsync) from [<c0108bc0>]

This can be caused by flush_dirty_inode() in f2fs_sync_node_pages() where
iput() requires f2fs_lock_op() again resulting in livelock.

Reported-by: Zhiguo Niu <[email protected]>
Signed-off-by: Jaegeuk Kim <[email protected]>
pull bot pushed a commit that referenced this pull request Aug 11, 2020
… set

We received an error report that perf-record caused 'Segmentation fault'
on a newly system (e.g. on the new installed ubuntu).

  (gdb) backtrace
  #0  __read_once_size (size=4, res=<synthetic pointer>, p=0x14) at /root/0-jinyao/acme/tools/include/linux/compiler.h:139
  #1  atomic_read (v=0x14) at /root/0-jinyao/acme/tools/include/asm/../../arch/x86/include/asm/atomic.h:28
  #2  refcount_read (r=0x14) at /root/0-jinyao/acme/tools/include/linux/refcount.h:65
  #3  perf_mmap__read_init (map=map@entry=0x0) at mmap.c:177
  #4  0x0000561ce5c0de39 in perf_evlist__poll_thread (arg=0x561ce68584d0) at util/sideband_evlist.c:62
  #5  0x00007fad78491609 in start_thread (arg=<optimized out>) at pthread_create.c:477
  #6  0x00007fad7823c103 in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:95

The root cause is, evlist__add_bpf_sb_event() just returns 0 if
HAVE_LIBBPF_SUPPORT is not defined (inline function path). So it will
not create a valid evsel for side-band event.

But perf-record still creates BPF side band thread to process the
side-band event, then the error happpens.

We can reproduce this issue by removing the libelf-dev. e.g.
1. apt-get remove libelf-dev
2. perf record -a -- sleep 1

  root@test:~# ./perf record -a -- sleep 1
  perf: Segmentation fault
  Obtained 6 stack frames.
  ./perf(+0x28eee8) [0x5562d6ef6ee8]
  /lib/x86_64-linux-gnu/libc.so.6(+0x46210) [0x7fbfdc65f210]
  ./perf(+0x342e74) [0x5562d6faae74]
  ./perf(+0x257e39) [0x5562d6ebfe39]
  /lib/x86_64-linux-gnu/libpthread.so.0(+0x9609) [0x7fbfdc990609]
  /lib/x86_64-linux-gnu/libc.so.6(clone+0x43) [0x7fbfdc73b103]
  Segmentation fault (core dumped)

To fix this issue,

1. We either install the missing libraries to let HAVE_LIBBPF_SUPPORT
   be defined.
   e.g. apt-get install libelf-dev and install other related libraries.

2. Use this patch to skip the side-band event setup if HAVE_LIBBPF_SUPPORT
   is not set.

Committer notes:

The side band thread is not used just with BPF, it is also used with
--switch-output-event, so narrow the ifdef to the BPF specific part.

Fixes: 23cbb41 ("perf record: Move side band evlist setup to separate routine")
Signed-off-by: Jin Yao <[email protected]>
Acked-by: Jiri Olsa <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Jin Yao <[email protected]>
Cc: Kan Liang <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Link: http://lore.kernel.org/lkml/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
pull bot pushed a commit that referenced this pull request Aug 16, 2020
struct list_lru_one l.nr_items could be accessed concurrently as noticed
by KCSAN,

 BUG: KCSAN: data-race in list_lru_count_one / list_lru_isolate_move

 write to 0xffffa102789c4510 of 8 bytes by task 823 on cpu 39:
  list_lru_isolate_move+0xf9/0x130
  list_lru_isolate_move at mm/list_lru.c:180
  inode_lru_isolate+0x12b/0x2a0
  __list_lru_walk_one+0x122/0x3d0
  list_lru_walk_one+0x75/0xa0
  prune_icache_sb+0x8b/0xc0
  super_cache_scan+0x1b8/0x250
  do_shrink_slab+0x256/0x6d0
  shrink_slab+0x41b/0x4a0
  shrink_node+0x35c/0xd80
  balance_pgdat+0x652/0xd90
  kswapd+0x396/0x8d0
  kthread+0x1e0/0x200
  ret_from_fork+0x27/0x50

 read to 0xffffa102789c4510 of 8 bytes by task 6345 on cpu 56:
  list_lru_count_one+0x116/0x2f0
  list_lru_count_one at mm/list_lru.c:193
  super_cache_count+0xe8/0x170
  do_shrink_slab+0x95/0x6d0
  shrink_slab+0x41b/0x4a0
  shrink_node+0x35c/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290
  __alloc_pages_nodemask+0x3bb/0x450
  alloc_pages_vma+0x8a/0x2c0
  do_anonymous_page+0x170/0x700
  __handle_mm_fault+0xc9f/0xd00
  handle_mm_fault+0xfc/0x2f0
  do_page_fault+0x263/0x6f9
  page_fault+0x34/0x40

 Reported by Kernel Concurrency Sanitizer on:
 CPU: 56 PID: 6345 Comm: oom01 Tainted: G        W    L 5.5.0-next-20200205+ #4
 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019

A shattered l.nr_items could affect the shrinker behaviour due to a data
race. Fix it by adding READ_ONCE() for the read. Since the writes are
aligned and up to word-size, assume those are safe from data races to
avoid readability issues of writing WRITE_ONCE(var, var + val).

Signed-off-by: Qian Cai <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Cc: Marco Elver <[email protected]>
Cc: Konrad Rzeszutek Wilk <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
pull bot pushed a commit that referenced this pull request Aug 22, 2020
Before v4.15 commit 75492a5 ("s390/scsi: Convert timers to use
timer_setup()"), we intentionally only passed zfcp_adapter as context
argument to zfcp_fsf_request_timeout_handler(). Since we only trigger
adapter recovery, it was unnecessary to sync against races between timeout
and (late) completion.  Likewise, we only passed zfcp_erp_action as context
argument to zfcp_erp_timeout_handler(). Since we only wakeup an ERP action,
it was unnecessary to sync against races between timeout and (late)
completion.

Meanwhile the timeout handlers get timer_list as context argument and do a
timer-specific container-of to zfcp_fsf_req which can have been freed.

Fix it by making sure that any request timeout handlers, that might just
have started before del_timer(), are completed by using del_timer_sync()
instead. This ensures the request free happens afterwards.

Space time diagram of potential use-after-free:

Basic idea is to have 2 or more pending requests whose timeouts run out at
almost the same time.

req 1 timeout     ERP thread        req 2 timeout
----------------  ----------------  ---------------------------------------
zfcp_fsf_request_timeout_handler
fsf_req = from_timer(fsf_req, t, timer)
adapter = fsf_req->adapter
zfcp_qdio_siosl(adapter)
zfcp_erp_adapter_reopen(adapter,...)
                  zfcp_erp_strategy
                  ...
                  zfcp_fsf_req_dismiss_all
                  list_for_each_entry_safe
                    zfcp_fsf_req_complete 1
                    del_timer 1
                    zfcp_fsf_req_free 1
                    zfcp_fsf_req_complete 2
                                    zfcp_fsf_request_timeout_handler
                    del_timer 2
                                    fsf_req = from_timer(fsf_req, t, timer)
                    zfcp_fsf_req_free 2
                                    adapter = fsf_req->adapter
                                              ^^^^^^^ already freed

Link: https://lore.kernel.org/r/[email protected]
Fixes: 75492a5 ("s390/scsi: Convert timers to use timer_setup()")
Cc: <[email protected]> #4.15+
Suggested-by: Julian Wiedmann <[email protected]>
Reviewed-by: Julian Wiedmann <[email protected]>
Signed-off-by: Steffen Maier <[email protected]>
Signed-off-by: Martin K. Petersen <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant