Dynamically invoke arbitrary code with Rust tricks, #[no_std] support, and compatibility for x64, x86, ARM64 and WoW64 (DInvoke)
This tool is a Rust version of DInvoke, originally written in C#, with additional features added.
- âś… Dynamically invoke arbitrary code (x64, x86, Wow64, ARM64).
- âś… Indirect Syscall (x64, x86, Wow64).
- âś… Redirecting Syscall Invocation to Different DLLs.
- âś… Tampered Syscalls Via Hardware BreakPoints (x64, x86, Wow64).
- âś… PE headers parsing.
- âś… Supports
#[no_std]environments (withalloc). - âś… Retrieve exported API addresses via string, ordinal, and hashing.
- âś… Retrieve module addresses via string and hashing.
- âś… Supports multiple 32-bit hash algorithms for API Hashing using
GetModuleHandleandGetProcAddress: Jenkins3, Jenkins One-at-a-Time, DJB2, Murmur3, FNV-1a, SDBM, Lose, PJW, JS, and AP.
Add dinvk to your project by updating your Cargo.toml:
cargo add dinvkdinvk provides several features for invoking code dynamically, performing indirect syscalls and manipulating exported modules and APIs. Below are detailed examples of how to use each feature.
Allows resolving and calling a function dynamically at runtime, avoiding static linking.
- This example demonstrates the dynamic invocation of arbitrary code using
dinvoke!, resolving function addresses at runtime without direct linking. In this case,HeapAllocis dynamically called to allocate memory. - Using this macro is beneficial if you want to avoid having APIs directly listed in the
Import Address Table (IAT)of your PE file.
use dinvk::{
data::HeapAllocFn,
dinvoke, GetModuleHandle,
GetProcessHeap
};
const HEAP_ZERO_MEMORY: u32 = 8u32;
let kernel32 = GetModuleHandle("KERNEL32.DLL", None);
let addr = dinvoke!(
kernel32,
"HeapAlloc",
HeapAllocFn,
GetProcessHeap(),
HEAP_ZERO_MEMORY,
0x200
);
println!("[+] Address: {:?}", addr);Retrieves the base address of a module and resolves exported APIs using different methods: by string, ordinal, or hash.
- In this example, the address of the
KERNEL32module is retrieved using both a string and a hash (Jenkins hash). - Then, the
LoadLibraryfunction address is resolved using the same methods, with an additional example using an ordinal number.
use dinvk::{hash::jenkins, GetModuleHandle, GetProcAddress};
// Retrieving module address via string and hash
let kernel32 = GetModuleHandle("KERNEL32.DLL", None);
let kernel32 = GetModuleHandle(3425263715u32, Some(jenkins));
// Retrieving exported API address via string, ordinal and hash
let addr = GetProcAddress(kernel32, "LoadLibraryA", None);
let addr = GetProcAddress(kernel32, 3962820501u32, Some(jenkins));
let addr = GetProcAddress(kernel32, 997, None);Executes syscalls indirectly, bypassing user-mode API hooks and security monitoring tools.
- Currently supporting x64, x86 and WoW64.
- It uses techniques such as Hells Gate, Halos Gate, and Tartarus Gate to dynamically locate the System Service Number (SSN) and invoke the syscall indirectly.
use std::{ffi::c_void, ptr::null_mut};
use dinvk::{
data::HANDLE,
NT_SUCCESS,
syscall,
Dll
};
// Memory allocation using a syscall
let mut addr = null_mut::<c_void>();
let mut size = (1 << 12) as usize;
let status = syscall!("NtAllocateVirtualMemory", -1isize as HANDLE, &mut addr, 0, &mut size, 0x3000, 0x04)
.ok_or("syscall resolution failed")?;
if !NT_SUCCESS(status) {
eprintln!("[-] NtAllocateVirtualMemory Failed With Status: {}", status);
return Ok(());
}By default, syscalls in Windows are invoked via ntdll.dll. However, on x86_64 architectures, other DLLs such as win32u.dll, vertdll.dll and iumdll.dll also contain syscall instructions, allowing you to avoid indirect calls via ntdll.dll. On x86, only win32u.dll has these instructions.
The code below demonstrates how to invoke NtAllocateVirtualMemory using different DLLs to execute the syscall:
use std::{ffi::c_void, ptr::null_mut};
use dinvk::{
data::{HANDLE, NTSTATUS},
syscall, Dll, NtCurrentProcess
NT_SUCCESS
};
// Alternatively, you can use Dll::Vertdll or Dll::Iumdll on x86_64
Dll::use_dll(Dll::Win32u);
// Memory allocation using a syscall
let mut addr = null_mut::<c_void>();
let mut size = (1 << 12) as usize;
let status = syscall!("NtAllocateVirtualMemory", NtCurrentProcess(), &mut addr, 0, &mut size, 0x3000, 0x04)
.ok_or("syscall resolution failed")?;
if !NT_SUCCESS(status) {
eprintln!("[-] NtAllocateVirtualMemory Failed With Status: {}", status);
return Ok(());
}This method can be useful to avoid indirect invocations in ntdll.dll, diversifying the points of origin of the syscalls in the process.
Supports various hashing algorithms for API resolution, improving stealth and flexibility.
- Currently, the library only supports 32-bit hashes for API lookup.
use dinvk::hash::*;
println!("{}", jenkins("dinvk"));
println!("{}", jenkins3("dinvk"));
println!("{}", ap("dinvk"));
println!("{}", js("dinvk"));
println!("{}", murmur3("dinvk"));
println!("{}", fnv1a("dinvk"));
println!("{}", djb2("dinvk"));
println!("{}", crc32ba("dinvk"));
println!("{}", loselose("dinvk"));
println!("{}", pjw("dinvk"));
println!("{}", sdbm("dinvk"));Utilizes hardware breakpoints to manipulate syscall parameters before execution, bypassing security hooks.
- The library includes several API wrappers that leverage DInvoke and support hardware breakpoints to spoof syscall arguments dynamically.
- These breakpoints modify syscall parameters after security monitoring tools inspect them but before the syscall executes, effectively bypassing detection.
- Currently supporting x64, x86 and WoW64.
- You can find the full list of wrapped functions in the wrappers module.
use dinvk::{
data::HANDLE,
breakpoint::{
set_use_breakpoint,
veh_handler
},
};
use dinvk::{
NT_SUCCESS,
AddVectoredExceptionHandler,
NtAllocateVirtualMemory,
RemoveVectoredExceptionHandler,
};
// Enabling breakpoint hardware
set_use_breakpoint(true);
let handle = AddVectoredExceptionHandler(0, Some(veh_handler));
// Allocating memory and using breakpoint hardware
let mut addr = std::ptr::null_mut();
let mut size = 1 << 12;
let status = NtAllocateVirtualMemory(-1isize as HANDLE, &mut addr, 0, &mut size, 0x3000, 0x04);
if !NT_SUCCESS(status) {
eprintln!("[-] NtAllocateVirtualMemory Failed With Status: {}", status);
return Ok(());
}
// Disabling breakpoint hardware
set_use_breakpoint(false);
RemoveVectoredExceptionHandler(handle);Enables #[no_std] compatibility for environments without the Rust standard library.
- To enable
#[no_std]support, define the required features in yourCargo.toml.
[dependencies]
dinvk = { version = "<version>", features = ["alloc", "panic"] }- Running in
#[no_std]Mode.
#![no_std]
#![no_main]
use dinvk::allocator::WinHeap;
use dinvk::{
get_ntdll_address, println,
GetProcAddress
};
#[unsafe(no_mangle)]
fn main() -> u8 {
let addr = GetProcAddress(get_ntdll_address(), "NtOpenProcess", None);
println!("[+] NtOpenProcess: {:?}", addr);
0
}
#[global_allocator]
static ALLOCATOR: WinHeap = WinHeap;
#[cfg(not(test))]
#[panic_handler]
fn panic(info: &core::panic::PanicInfo) -> ! {
dinvk::panic::panic_handler(info)
}I want to express my gratitude to these projects that inspired me to create dinvk and contribute with some features:
This project is licensed under the MIT License. See the LICENSE file for details.