Thanks to visit codestin.com
Credit goes to github.com

Skip to content

johannschopplich/tokenx

Repository files navigation

tokenx

npm version

Fast and lightweight token count estimation for any LLM without requiring a full tokenizer. This library provides quick approximations that are good enough for most use cases while keeping your bundle size minimal.

For advanced use cases requiring precise token counts, please use a full tokenizer like gpt-tokenizer.

Benchmarks

The following table shows the accuracy of the token count approximation for different input texts:

Description Actual GPT Token Count Estimated Token Count Token Count Deviation
Short English text 10 11 10.00%
German text with umlauts 48 49 2.08%
Metamorphosis by Franz Kafka (English) 31796 35705 12.29%
Die Verwandlung by Franz Kafka (German) 35309 35069 0.68%
道德經 by Laozi (Chinese) 11712 12059 2.96%
TypeScript ES5 Type Declarations (~ 4000 loc) 49304 52615 6.72%

Features

  • 94% accuracy compared to full tokenizers (see benchmarks below)
  • 📦 Just 2kB bundle size with zero dependencies
  • 🌍 Multi-language support with configurable language rules
  • 🗣️ Built-in support for accented characters (German, French, Spanish, etc.)
  • 🔧 Configurable and extensible

Installation

Run the following command to add tokenx to your project.

# npm
npm install tokenx

# pnpm
pnpm add tokenx

# yarn
yarn add tokenx

Usage

import { estimateTokenCount, isWithinTokenLimit, splitByTokens } from 'tokenx'

const text = 'Your text goes here.'

// Estimate the number of tokens in the text
const estimatedTokens = estimateTokenCount(text)
console.log(`Estimated token count: ${estimatedTokens}`)

// Check if text is within a specific token limit
const tokenLimit = 1024
const withinLimit = isWithinTokenLimit(text, tokenLimit)
console.log(`Is within token limit: ${withinLimit}`)

// Split text into token-based chunks
const chunks = splitByTokens(text, 100)
console.log(`Split into ${chunks.length} chunks`)

// Use custom options for different languages or models
const customOptions = {
  defaultCharsPerToken: 4, // More conservative estimation
  languageConfigs: [
    { pattern: /[]/g, averageCharsPerToken: 1.5 }, // Custom Chinese rule
  ]
}

const customEstimate = estimateTokenCount(text, customOptions)
console.log(`Custom estimate: ${customEstimate}`)

API

estimateTokenCount

Estimates the number of tokens in a given input string using heuristic rules that work across multiple languages and text types.

Usage:

const estimatedTokens = estimateTokenCount('Hello, world!')

// With custom options
const customEstimate = estimateTokenCount('Bonjour le monde!', {
  defaultCharsPerToken: 4,
  languageConfigs: [
    { pattern: /[éèêëàâîï]/i, averageCharsPerToken: 3 }
  ]
})

Type Declaration:

function estimateTokenCount(
  text?: string,
  options?: TokenEstimationOptions
): number

interface TokenEstimationOptions {
  /** Default average characters per token when no language-specific rule applies */
  defaultCharsPerToken?: number
  /** Custom language configurations to override defaults */
  languageConfigs?: LanguageConfig[]
}

interface LanguageConfig {
  /** Regular expression to detect the language */
  pattern: RegExp
  /** Average number of characters per token for this language */
  averageCharsPerToken: number
}

isWithinTokenLimit

Checks if the estimated token count of the input is within a specified token limit.

Usage:

const withinLimit = isWithinTokenLimit('Check this text against a limit', 100)
// With custom options
const customCheck = isWithinTokenLimit('Text', 50, { defaultCharsPerToken: 3 })

Type Declaration:

function isWithinTokenLimit(
  text: string,
  tokenLimit: number,
  options?: TokenEstimationOptions
): boolean

sliceByTokens

Extracts a portion of text based on token positions, similar to Array.prototype.slice(). Supports both positive and negative indices.

Usage:

const text = 'Hello, world! This is a test sentence.'

const firstThree = sliceByTokens(text, 0, 3)
const fromSecond = sliceByTokens(text, 2)
const lastTwo = sliceByTokens(text, -2)
const middle = sliceByTokens(text, 1, -1)

// With custom options
const customSlice = sliceByTokens(text, 0, 5, {
  defaultCharsPerToken: 4,
  languageConfigs: [
    { pattern: /[éèêëàâîï]/i, averageCharsPerToken: 3 }
  ]
})

Type Declaration:

function sliceByTokens(
  text: string,
  start?: number,
  end?: number,
  options?: TokenEstimationOptions
): string

Parameters:

  • text - The input text to slice
  • start - The start token index (inclusive). If negative, treated as offset from end. Default: 0
  • end - The end token index (exclusive). If negative, treated as offset from end. If omitted, slices to the end
  • options - Token estimation options (same as estimateTokenCount)

Returns:

The sliced text portion corresponding to the specified token range.

splitByTokens

Splits text into chunks based on token count. Useful for chunking documents for RAG, batch processing, or staying within context windows.

Usage:

const text = 'Long text that needs to be split into smaller chunks...'

// Basic splitting
const chunks = splitByTokens(text, 100)
console.log(`Split into ${chunks.length} chunks`)

// With overlap for semantic continuity
const overlappedChunks = splitByTokens(text, 100, { overlap: 10 })

// With custom options
const customChunks = splitByTokens(text, 50, {
  defaultCharsPerToken: 4,
  overlap: 5
})

Type Declaration:

interface SplitByTokensOptions extends TokenEstimationOptions {
  /** Number of tokens to overlap between consecutive chunks (default: 0) */
  overlap?: number
}

function splitByTokens(
  text: string,
  tokensPerChunk: number,
  options?: SplitByTokensOptions
): string[]

Parameters:

  • text - The input text to split
  • tokensPerChunk - Maximum number of tokens per chunk
  • options - Token estimation options with optional overlap

Returns:

An array of text chunks, each containing approximately tokensPerChunk tokens.

License

MIT License © 2023-PRESENT Johann Schopplich

About

📐 Fast token estimation at 94% accuracy of a full tokenizer in a 2kB bundle

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •