Thanks to visit codestin.com
Credit goes to github.com

Skip to content

joyrla/hw6

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Serverless Cold-Start Prediction Pipeline

Predicts serverless function invocation traffic using a naive baseline (Lag-1) vs an AI model (Amazon Chronos).

Results: AI achieves 6.9% lower MAE than baseline (4403.89 vs 4728.18).


Setup

Requires: Python 3.9+

# Install dependencies
pip install pandas numpy pyarrow matplotlib scikit-learn torch chronos-forecasting

# Download dataset from Kaggle
# https://www.kaggle.com/datasets/theodoram/azure-2019-public-dataset
# Extract to: data/azure-functions-dataset-2019/

Run

python3 run_pipeline.py

Or use the notebook: notebooks/pipeline_demo.ipynb


Expected Output

Method               | MAE          | Cold Starts 
------------------------------------------------------------
Baseline (Lag-1)     | 4728.18      | 146         
AI (Chronos)         | 4403.89      | 151         

MAE Improvement: 6.9%

Reproducibility

  • Seeds: np.random.seed(42), torch.manual_seed(42)
  • Tested on: macOS 26.1, Python 3.9.6, Apple M1 Pro
  • Package versions: pandas 2.2.3, numpy 1.24.4, torch 2.8.0, scikit-learn 1.6.1

Files

submission/
├── README.md
├── run_pipeline.py
├── report_2022195142.pdf
├── notebooks/pipeline_demo.ipynb
└── figures/

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published