Thanks to visit codestin.com
Credit goes to github.com

Skip to content

kumo-ai/kumo-rfm-mcp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

KumoRFM MCP Server

KumoRFM β€’ Notebooks β€’ Blog β€’ Get an API key

PyPI - Python Version PyPI Status Slack

πŸ”¬ MCP server to query KumoRFM in your agentic flows

πŸ“– Introduction

KumoRFM is a pre-trained Relational Foundation Model (RFM) that generates training-free predictions on any relational multi-table data by interpreting the data as a (temporal) heterogeneous graph. It can be queried via the Predictive Query Language (PQL).

This repository hosts a full-featured MCP (Model Context Protocol) server that empowers AI assistants with KumoRFM intelligence. This server enables:

  • πŸ•ΈοΈ Build, manage, and visualize graphs directly from CSV or Parquet files
  • πŸ’¬ Convert natural language into PQL queries for seamless interaction
  • πŸ€– Query, analyze, and evaluate predictions from KumoRFM (missing value imputation, temporal forecasting, etc) all without any training required

πŸš€ Installation

🐍 Traditional MCP Server

The KumoRFM MCP server is available for Python 3.10 and above. To install, simply run:

pip install kumo-rfm-mcp

Add to your MCP configuration file (e.g., Claude Desktop's mcp_config.json):

{
  "mcpServers": {
    "kumo-rfm": {
      "command": "python",
      "args": ["-m", "kumo_rfm_mcp.server"],
      "env": {
        "KUMO_API_KEY": "your_api_key_here"
      }
    }
  }
}

⚑ MCP Bundle

We provide a single-click installation via our MCP Bundle (MCPB) (e.g., for integration into Claude Desktop):

  1. Download the dxt file from here
  2. Double click to install

The MCP Bundle supports Linux, macOS and Windows, but requires a Python executable to be found in order to create a separate new virtual environment.

🎬 Claude Desktop Demo

See here for the transcript.

claude_desktop_demo.mp4

πŸ”¬ Agentic Workflows

You can use the KumoRFM MCP directly in your agentic workflows:


[Example]
from crewai import Agent
from crewai_tools import MCPServerAdapter
from mcp import StdioServerParameters

params = StdioServerParameters(
    command='python',
    args=['-m', 'kumo_rfm_mcp.server'],
    env={'KUMO_API_KEY': ...},
)

with MCPServerAdapter(params) as mcp_tools:
    agent = Agent(
        role=...,
        goal=...,
        backstory=...,
        tools=mcp_tools,
    )

[Example]
from langchain_mcp_adapter.client MultiServerMCPClient
from langgraph.prebuilt import create_react_agent

client = MultiServerMCPClient({
    'kumo-rfm': {
        'command': 'python',
        'args': ['-m', 'kumo_rfm_mcp.server'],
        'env': {'KUMO_API_KEY': ...},
    }
})

agent = create_react_agent(
    llm=...,
    tools=await client.get_tools(),
)

[Example]
from agents import Agent
from agents.mcp import MCPServerStdio

async with MCPServerStdio(params={
    'command': 'python',
    'args': ['-m', 'kumo_rfm_mcp.server'],
    'env': {'KUMO_API_KEY': ...},
}) as server:
    agent = Agent(
        name=...,
        instructions=...,
        mcp_servers=[server],
    )
from claude_code_sdk import query, ClaudeCodeOptions

mcp_servers = {
    'kumo-rfm': {
        'command': 'python',
        'args': ['-m', 'kumo_rfm_mcp.server'],
        'env': {'KUMO_API_KEY': ...},
    }
}

async for message in query(
    prompt=...,
    options=ClaudeCodeOptions(
        system_prompt=...,
        mcp_servers=mcp_servers,
        permission_mode='default',
    ),
):
    ...

Browse our examples to get started with agentic workflows powered by KumoRFM.

πŸ“š Available Tools

I/O Operations

  • πŸ” find_table_files - Searching for tabular files: Find all table-like files (e.g., CSV, Parquet) in a directory.
  • 🧐 inspect_table_files - Analyzing table structure: Inspect the first rows of table-like files.

Graph Management

  • πŸ—‚οΈ inspect_graph_metadata - Reviewing graph schema: Inspect the current graph metadata.
  • πŸ”„ update_graph_metadata - Updating graph schema: Partially update the current graph metadata.
  • πŸ–ΌοΈ get_mermaid - Creating graph diagram: Return the graph as a Mermaid entity relationship diagram.
  • πŸ•ΈοΈ materialize_graph - Assembling graph: Materialize the graph based on the current state of the graph metadata to make it available for inference operations.
  • πŸ“‚ lookup_table_rows - Retrieving table entries: Lookup rows in the raw data frame of a table for a list of primary keys.

Model Execution

  • πŸ€– predict - Running predictive query: Execute a predictive query and return model predictions.
  • πŸ“Š evaluate - Evaluating predictive query: Evaluate a predictive query and return performance metrics which compares predictions against known ground-truth labels from historical examples.
  • 🧠 explain - Explaining prediction: Execute a predictive query and explain the model prediction.

πŸ”§ Configuration

Environment Variables

  • KUMO_API_KEY: Authentication is needed once before predicting or evaluating with the KumoRFM model. You can generate your KumoRFM API key for free here. If not set, you can also authenticate on-the-fly in individual session via an OAuth2 flow.

We love your feedback! ❀️

As you work with KumoRFM, if you encounter any problems or things that are confusing or don't work quite right, please open a new :octocat:issue. You can also submit general feedback and suggestions here. Join our Slack!

About

πŸ”¬ MCP server to query KumoRFM in your agentic flows

Resources

License

Stars

Watchers

Forks

Contributors 5

Languages