Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Nano vLLM for older GPU architectures such as V100 or T4.

License

kaka-zb/nano-vllm-for-older-gpu

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Nano-vLLM-for-Older-GPU

A lightweight vLLM implementation built from scratch.

The original implementation is incompatible with older GPU architectures such as V100 or T4. This repository provides compatibility by leveraging the torch_native attention backend.

Key Features

  • 🚀 Fast offline inference - Comparable inference speeds to vLLM
  • 📖 Readable codebase - Clean implementation in ~ 1,200 lines of Python code
  • Optimization Suite - Prefix caching, Tensor Parallelism, Torch compilation, CUDA graph, etc.

Installation

pip install git+https://github.com/GeeeekExplorer/nano-vllm.git

Manual Download

If you prefer to download the model weights manually, use the following command:

huggingface-cli download --resume-download Qwen/Qwen3-0.6B \
  --local-dir ~/huggingface/Qwen3-0.6B/ \
  --local-dir-use-symlinks False

Quick Start

See example.py for usage. The API mirrors vLLM's interface with minor differences in the LLM.generate method:

from nanovllm import LLM, SamplingParams
llm = LLM("/YOUR/MODEL/PATH", enforce_eager=True, tensor_parallel_size=1)
sampling_params = SamplingParams(temperature=0.6, max_tokens=256)
prompts = ["Hello, Nano-vLLM."]
outputs = llm.generate(prompts, sampling_params)
outputs[0]["text"]

Benchmark

See bench.py for benchmark.

Test Configuration:

  • Hardware: RTX 4070 Laptop (8GB)
  • Model: Qwen3-0.6B
  • Total Requests: 256 sequences
  • Input Length: Randomly sampled between 100–1024 tokens
  • Output Length: Randomly sampled between 100–1024 tokens

Performance Results:

Inference Engine Output Tokens Time (s) Throughput (tokens/s)
vLLM 133,966 98.37 1361.84
Nano-vLLM 133,966 93.41 1434.13

Star History

Star History Chart

About

Nano vLLM for older GPU architectures such as V100 or T4.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%