Thanks to visit codestin.com
Credit goes to github.com

Skip to content

karlotimmerman/DATAGEN

 
 

Repository files navigation

DATAGEN - AI Document Analysis System

DATAGEN is an advanced document analysis platform powered by AI agents. It allows users to upload documents for AI-powered analysis and visualization.

System Architecture

  • Backend: Python-based multi-agent system using LangChain and LangGraph with OpenAI LLMs
  • API Server: FastAPI server that bridges the frontend with the backend agent system
  • Frontend: Next.js application with TypeScript, shadcn/UI components, and built-in API routes

Getting Started

Prerequisites

  • Python 3.10+
  • Node.js 18+
  • npm or pnpm

Installation

  1. Clone the repository:

    git clone https://github.com/karlotimmerman/DATAGEN.git
    cd DATAGEN
  2. Install backend dependencies:

    pip install -r requirements.txt
  3. Install frontend dependencies:

    cd frontend
    npm install
    # or if using pnpm
    pnpm install

Running the Application

  1. Start the FastAPI backend server:

    python api_server.py

    The API server will be available at http://localhost:8000

  2. Start the frontend development server:

    cd frontend
    npm run dev
    # or if using pnpm
    pnpm dev

    The frontend will be available at http://localhost:3000

Usage

  1. Open your browser and navigate to http://localhost:3000
  2. Upload documents for analysis
  3. Provide analysis instructions
  4. View real-time analysis progress and results

Features

  • Document upload and processing
  • Real-time analysis progress tracking
  • Interactive visualizations
  • Code generation for data analysis
  • Comprehensive analysis reports

Development

Environment Variables

Frontend (.env.local)

NEXT_PUBLIC_API_BASE_URL=http://localhost:8000
NEXT_PUBLIC_SOCKET_URL=ws://localhost:8000

Backend

Configure your OpenAI API key and other settings as needed.

Project Structure

  • /frontend - Next.js frontend application
  • /api_server.py - FastAPI server
  • /main.py - Multi-agent system implementation

Deployment

Production Build

  1. Build the frontend:

    cd frontend
    npm run build
    # or if using pnpm
    pnpm build
  2. For production deployment, consider using:

    • Docker containers
    • Nginx as a reverse proxy
    • PM2 for process management

License

MIT License

Acknowledgements

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.7%
  • Cython 0.9%
  • C 0.8%
  • C++ 0.3%
  • TypeScript 0.2%
  • XSLT 0.1%