Thanks to visit codestin.com
Credit goes to github.com

Skip to content

kelelink/Cyber_NER-RE

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

原型系统(APP)项目说明文档


一、源代码总体说明

1. 项目目录结构

app/  
├── data/                 # re模型中数据处理代码  
├── lit_models/           # re模型中PyTorch Lightning模型代码  
├── models/               # re模型中模型代码  
├── ner/                  # NER模型运行参数、数据和结果 
├── prompt4ner/           # ner模型 
├── re/                   # re模型运行参数、数据和结果 
├── ner_utils.py          # NER 页面前端代码  
├── nerApp.py             # NER APP 入口
├── re_utils.py           # RE 页面前端代码 
└── reApp.py              # RE APP 入口  

二、运行环境配置

1. 基础环境

OS: Ubuntu 20.04 LTS  
GPU: NVIDIA 4090 * 2 (24GB VRAM * 2)  
CUDA: 12.1  
cuDNN: 8.9.0  
Python: 3.8.12  

2. 依赖安装

# 创建ner环境
conda create -n ner python=3.8
conda activate ner
# 通过requirements.txt一键安装  
pip install -r requirements.txt  
# requirements.txt 内容  
streamlit
torch
transformers==4.20.1    
tqdm==4.54.0
Jinja2==3.0.1
scikit-learn==0.23.2
numpy==1.19.2
scipy==1.5.4
pynvml==8.0.4
tensorboard==2.13.0
pillow==8.1.2
# 创建re环境
conda create -n re python=3.9
conda activate re
# 通过requirements.txt一键安装  
pip install -r requirements.txt  
# requirements.txt 内容  
streamlit
numpy==1.20.3
tokenizers==0.10.3
pytorch_lightning==1.3.1
regex==2024.11.6
torch==1.13.1
transformers==4.7.0
tqdm==4.49.0
activations==0.1.0
dataclasses==0.6
file_utils==0.0.1
flax==0.3.4
PyYAML==5.4.1
utils==1.0.1

三、执行流程说明

0. 环境激活

conda activate re
conda activate ner

1. 运行脚本

streamlit run re
streamlit run ner

2. 打开网页

About

针对网络安全领域的命名实体识别和关系抽取系统

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.8%
  • HTML 1.2%