Thanks to visit codestin.com
Credit goes to github.com

Skip to content
/ HLI Public

Pytorch Code for ICDM 2023 Paper---Hierarchical Label Inference Incorporating Attribute Semantics in Attributed Networks.

Notifications You must be signed in to change notification settings

ki-ljl/HLI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hierarchical Label Inference Incorporating Attribute Semantics in Attributed Networks (ICDM 2023)

Code for paper---Hierarchical Label Inference Incorporating Attribute Semantics in Attributed Networks. image

Code Overview

HLI:.
│  args.py
│  get_data.py
│  pytorchtools.py
│  requirements.txt
│          
├─data            
│  ├─ACS
│  │      
│  └─IS
│          
└─src
    ├─main.py
    ├─models.py
    └─util.py
  1. args.py: args.py is the parameter configuration file, including model parameters and training parameters.
  2. get_data.py: This file is used to load the data.
  3. pytorchtools.py: This file is used to define the earlystopping mechanism.
  4. requirements.txt: Dependencies file.
  5. data/:Dataset folder.
  6. src/main.py: Main file.
  7. src/models.py: Implementation of HLI.
  8. src/util.py: Defining various toolkits.

Dependencies

Please install the following packages:

gensim==4.1.0
matplotlib==3.2.2
networkx==2.3
numpy==1.21.6
pandas==1.2.3
scikit-learn==1.0.2
scipy==1.7.3
torch==1.10.1+cu111
torch-cluster==1.5.9
torch-geometric==2.2.0
torch-scatter==2.0.9
torch-sparse==0.6.12
torch-spline-conv==1.2.1
tqdm==4.62.3

You can also simply run:

pip install -r requirements.txt

Usage

Dataset Preparation

Due to the file size limitation of github, we uploaded the datasets to Google Drive. Please download the two hash_vector_embeddings_2048.pkl files and place them in the corresponding folders before running the code.

Full-supervised Attribute Label Inference

cd src/
python main.py --experiment full --dataset IS
python main.py --experiment full --dataset ACS

image

Semi-supervised Attribute Label Inference

cd src/
python main.py --experiment semi --dataset IS
python main.py --experiment semi --dataset ACS

image

Cite

@inproceedings{li2023hierarchical,
  title={Hierarchical Label Inference Incorporating Attribute Semantics in Attributed Networks},
  author={Li, Junliang and Yang, Yajun and Hu, Qinghua and Wang, Xin and Gao, Hong},
  booktitle={2023 IEEE International Conference on Data Mining (ICDM)},
  pages={1091--1096},
  year={2023},
  organization={IEEE}
}

About

Pytorch Code for ICDM 2023 Paper---Hierarchical Label Inference Incorporating Attribute Semantics in Attributed Networks.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages