Code for paper---Hierarchical Label Inference Incorporating Attribute Semantics in Attributed Networks.
HLI:.
│ args.py
│ get_data.py
│ pytorchtools.py
│ requirements.txt
│
├─data
│ ├─ACS
│ │
│ └─IS
│
└─src
├─main.py
├─models.py
└─util.py- args.py: args.py is the parameter configuration file, including model parameters and training parameters.
- get_data.py: This file is used to load the data.
- pytorchtools.py: This file is used to define the earlystopping mechanism.
- requirements.txt: Dependencies file.
- data/:Dataset folder.
- src/main.py: Main file.
- src/models.py: Implementation of HLI.
- src/util.py: Defining various toolkits.
Please install the following packages:
gensim==4.1.0
matplotlib==3.2.2
networkx==2.3
numpy==1.21.6
pandas==1.2.3
scikit-learn==1.0.2
scipy==1.7.3
torch==1.10.1+cu111
torch-cluster==1.5.9
torch-geometric==2.2.0
torch-scatter==2.0.9
torch-sparse==0.6.12
torch-spline-conv==1.2.1
tqdm==4.62.3
You can also simply run:
pip install -r requirements.txt
Due to the file size limitation of github, we uploaded the datasets to Google Drive. Please download the two hash_vector_embeddings_2048.pkl files and place them in the corresponding folders before running the code.
cd src/
python main.py --experiment full --dataset IS
python main.py --experiment full --dataset ACScd src/
python main.py --experiment semi --dataset IS
python main.py --experiment semi --dataset ACS@inproceedings{li2023hierarchical,
title={Hierarchical Label Inference Incorporating Attribute Semantics in Attributed Networks},
author={Li, Junliang and Yang, Yajun and Hu, Qinghua and Wang, Xin and Gao, Hong},
booktitle={2023 IEEE International Conference on Data Mining (ICDM)},
pages={1091--1096},
year={2023},
organization={IEEE}
}