Thanks to visit codestin.com
Credit goes to github.com

Skip to content

luismesas/docker-keras

 
 

Repository files navigation

docker-keras

docker-keras is a minimal Docker image built from Debian 9 (amd64) for reproducible deep learning based on Keras. It features minimal images for Python 2 or 3, TensorFlow or Theano backends, processing on CPU or GPU, and uses only Debian and Python packages (no manual installations).

Open source project:

Available tags:

  • 1.1.1-py2, 1.1.1-cpu, 1.1.1, latest points to 1.1.1-py2-tf-cpu
  • 1.1.1-py3 points to 1.1.1-py3-tf-cpu
  • 1.1.1-gpu points to 1.1.1-py2-tf-gpu
  • 1.1.1-py2-tf-cpu/1.1.1-py2-tf-gpu [2016-10-31]: Python 2 + Keras (1.1.1) + TensorFlow (0.10.0) on CPU/GPU (Dockerfile.py2-tf-cpu/.py2-tf-gpu)
  • 1.1.1-py2-th-cpu/1.1.1-py2-th-gpu [2016-10-31]: Python 2 + Keras (1.1.1) + Theano (0.8.2) on CPU/GPU (Dockerfile.py2-th-cpu/.py2-th-gpu)
  • 1.1.1-py3-tf-cpu/1.1.1-py3-tf-gpu [2016-10-31]: Python 2 + Keras (1.1.1) + TensorFlow (0.10.0) on CPU/GPU (Dockerfile.py3-tf-cpu/.py3-tf-gpu)
  • 1.1.1-py3-th-cpu/1.1.1-py3-th-gpu [2016-10-31]: Python 2 + Keras (1.1.1) + Theano (0.8.2) on CPU/GPU (Dockerfile.py3-th-cpu/.py3-th-gpu)
  • 1.1.0-py2-tf-cpu/1.1.0-py2-tf-gpu [2016-09-20]: Python 2 + Keras (1.1.0) + TensorFlow (0.10.0) on CPU/GPU
  • 1.1.0-py2-th-cpu/1.1.0-py2-th-gpu [2016-09-20]: Python 2 + Keras (1.1.0) + Theano (0.8.2) on CPU/GPU
  • 1.1.0-py3-tf-cpu/1.1.0-py3-tf-gpu [2016-09-20]: Python 2 + Keras (1.1.0) + TensorFlow (0.10.0) on CPU/GPU
  • 1.1.0-py3-th-cpu/1.1.0-py3-th-gpu [2016-09-20]: Python 2 + Keras (1.1.0) + Theano (0.8.2) on CPU/GPU
  • 1.0.8-py2-tf-cpu/1.0.8-py2-tf-gpu [2016-08-28]: Python 2 + Keras (1.0.8) + TensorFlow (0.9.0) on CPU/GPU
  • 1.0.8-py2-th-cpu/1.0.8-py2-th-gpu [2016-08-28]: Python 2 + Keras (1.0.8) + Theano (0.8.2) on CPU/GPU
  • 1.0.8-py3-tf-cpu/1.0.8-py3-tf-gpu [2016-08-28]: Python 2 + Keras (1.0.8) + TensorFlow (0.9.0) on CPU/GPU
  • 1.0.8-py3-th-cpu/1.0.8-py3-th-gpu [2016-08-28]: Python 2 + Keras (1.0.8) + Theano (0.8.2) on CPU/GPU
  • 1.0.6-py2-tf-cpu/1.0.6-py2-tf-gpu [2016-07-20]: Python 2 + Keras (1.0.6) + TensorFlow (0.9.0) on CPU/GPU
  • 1.0.6-py2-th-cpu/1.0.6-py2-th-gpu [2016-07-20]: Python 2 + Keras (1.0.6) + Theano (0.8.2) on CPU/GPU
  • 1.0.6-py3-tf-cpu/1.0.6-py3-tf-gpu [2016-07-20]: Python 2 + Keras (1.0.6) + TensorFlow (0.9.0) on CPU/GPU
  • 1.0.6-py3-th-cpu/1.0.6-py3-th-gpu [2016-07-20]: Python 2 + Keras (1.0.6) + Theano (0.8.2) on CPU/GPU
  • 1.0.4-py2-tf-cpu/1.0.4-py2-tf-gpu [2016-06-16]: Python 2 + Keras (1.0.4) + TensorFlow (0.8.0) on CPU/GPU
  • 1.0.4-py2-th-cpu/1.0.4-py2-th-gpu [2016-06-16]: Python 2 + Keras (1.0.4) + Theano (0.8.2) on CPU/GPU
  • 1.0.4-py3-tf-cpu/1.0.4-py3-tf-gpu [2016-06-16]: Python 2 + Keras (1.0.4) + TensorFlow (0.8.0) on CPU/GPU
  • 1.0.4-py3-th-cpu/1.0.4-py3-th-gpu [2016-06-16]: Python 2 + Keras (1.0.4) + Theano (0.8.2) on CPU/GPU
  • 1.0.1-py2-th-cpu/1.0.1-py2-th-gpu [2016-04-16]: Python 2 + Keras (1.0.1) + Theano (0.8.1) on CPU/GPU
  • 0.3.3-py2-th-cpu/0.3.3-py2-th-gpu [2016-03-31]: Python 2 + Keras (0.3.3) + Theano (0.8.1) on CPU/GPU

Usage

Quick experiment with latest Keras (with TensorFlow backend on CPU) and your Python 2 code in /srv/ai:

$ docker run -it --rm -v /srv/ai:/srv/ai gw000/keras /srv/ai/run.py

Or using TensorFlow backend on GPUs (see docker-debian-cuda) in Python 2:

$ docker run -it --rm $(ls /dev/nvidia* | xargs -I{} echo '--device={}') -v /srv/ai:/srv/ai gw000/keras:1.0.4-py2-tf-gpu /srv/ai/run.py

Or using Theano backend on GPUs (see docker-debian-cuda) in Python 3:

$ docker run -it --rm $(ls /dev/nvidia* | xargs -I{} echo '--device={}') -v /srv/ai:/srv/ai gw000/keras:1.0.4-py3-th-gpu /srv/ai/run.py

Or specify a fixed version in your Dockerfile for reproducible deep learning:

FROM gw000/keras:1.0.8-py2-th-cpu

ADD ai/ /srv/ai/
RUN chmod +x /srv/ai/run.py

CMD ["/srv/ai/run.py"]

If you are looking for a full deep learning research environment based on Keras and Jupyter, check out docker-keras-full.

Feedback

If you encounter any bugs or have feature requests, please file them in the issue tracker or even develop it yourself and submit a pull request over GitHub.

License

Copyright © 2016 gw0 [http://gw.tnode.com/] <[email protected]>

This library is licensed under the GNU Affero General Public License 3.0+ (AGPL-3.0+). Note that it is mandatory to make all modifications and complete source code of this library publicly available to any user.

About

Docker image: Keras in Docker for reproducible deep learning on CPU or GPU

Resources

Stars

Watchers

Forks

Packages

No packages published