Thanks to visit codestin.com
Credit goes to github.com

Skip to content

labiip/ESNet

Repository files navigation

Code dependency

  • Linux 和 macOS
  • Python 3.6+
  • PyTorch 1.3+
  • CUDA 9.2+
  • GCC 5+
  • MMCV
MMDetection MMCV
master mmcv-full>=1.3.17, <1.5.0
2.23.0 mmcv-full>=1.3.17, <1.5.0
2.22.0 mmcv-full>=1.3.17, <1.5.0
2.21.0 mmcv-full>=1.3.17, <1.5.0
2.20.0 mmcv-full>=1.3.17, <1.5.0
2.19.1 mmcv-full>=1.3.17, <1.5.0
2.19.0 mmcv-full>=1.3.17, <1.5.0
2.18.1 mmcv-full>=1.3.17, <1.4.0
2.18.0 mmcv-full>=1.3.14, <1.4.0
2.17.0 mmcv-full>=1.3.14, <1.4.0
2.16.0 mmcv-full>=1.3.8, <1.4.0
2.15.1 mmcv-full>=1.3.8, <1.4.0
2.15.0 mmcv-full>=1.3.8, <1.4.0
2.14.0 mmcv-full>=1.3.8, <1.4.0
2.13.0 mmcv-full>=1.3.3, <1.4.0
2.12.0 mmcv-full>=1.3.3, <1.4.0
2.11.0 mmcv-full>=1.2.4, <1.4.0
2.10.0 mmcv-full>=1.2.4, <1.4.0

Installation process

Prepare the environment

  1. Create a virtual environment with conda and enter the virtual environment.

    conda create -n mmdet python=3.7 -y
    conda activate mmdet
  2. Install PyTorch and torchvision based on PyTorch website, for example:

    conda install pytorch torchvision -c pytorch
    conda install pytorch cudatoolkit=10.1 torchvision -c pytorch
    conda install pytorch=1.3.1 cudatoolkit=9.2 torchvision=0.4.2 -c pytorch

Install MMDetection

  1. To install mmcv-full, we recommend using the pre-built package to install:

    pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html

    You need to replace '{cu_version}' and '{torch_version}' on the command line with the corresponding version. For example, in CUDA 11 and PyTorch 1.7.0 environments, you can install the latest version of MMCV with the following command:

    pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html

    Refer to [MMCV] (https://mmcv.readthedocs.io/en/latest/#installation) access to different versions of the compatible to different MMCV PyTorch and CUDA version. At the same time, you can also compile MMCV from source by using the following command line:

    git clone https://github.com/open-mmlab/mmcv.git
    cd mmcv
    MMCV_WITH_OPS=1 pip install -e .  
    cd ..
    pip install mmcv-full
    pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7/index.html
    
  2. Insatll MMDetection:

    pip install -r requirements/build.txt
    pip install -v -e .  # or "python setup.py develop"

Setup script from scratch (sample installation)

conda create -n mmdet python=3.7 -y
conda activate mmdet

conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch -y

# Install mmcv
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6.0/index.html (这里要选择对应当前mmdet的版本的mmcv版本,具体版本查看可查看mmdet/version.py)

# Insatll MMDetection
pip install -r requirements/build.txt
pip install -v -e .

verify

To verify that MMDetection and the required environment are installed correctly, we can run the sample Python code to initialize the detector and reason about a demonstration image:

from mmdet.apis import init_detector, inference_detector

config_file = 'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
#http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
device = 'cuda:0'
# Initialize the detector
model = init_detector(config_file, checkpoint_file, device=device)
#  Reasoning demo image
inference_detector(model, 'demo/demo.jpg')

If MMDetection is installed successfully, the above code runs completely.

Training code

# The model is trained using the command line
python tools/train.py work_dirs/esnet/mask_rcnn_r101_fpn_2x_coco.py ```

## Test code
```python
# Test the model using the command line
python tools/test.py work_dirs/esnet/mask_rcnn_r101_fpn_2x_coco.py work_dirs/esnet/epoch_40.pth```

## Single picture reasoning
```python
# Single-image reasoning on the model using the command line
python demo/image_demo.py demo/test.tif work_dirs/esnet/mask_rcnn_r101_fpn_2x_coco.py /TEST/xiuyu.li/esnet/epoch_40.pth

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages