Thanks to visit codestin.com
Credit goes to github.com

Skip to content

lazyloafer/QIPP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

55 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

QIPP

1. QIPP + Iterative KGQE Models

KGQE Models

See CQD\README.md and QTO\README.md for details.

2. QIPP + End2End KGQE Models

KGQE Models

2.1. Datasets

Download FB15k-237-betae, FB15k-betae, and NELL-betae from BetaE.

Put these three datasets into data/:

data/
│
├── FB15k-237-betae/
│   ├── train + valid + test data
├── FB15k-betae/
│   ├── train + valid + test data
└── NELL-betae/
    └── train + valid + test data

2.2. Pre-trained Language Model

Download the Pre-trained BERT from Hugging Face

Put Pre-trained BERT files into PLM/bert-base-cased/

Set "num_hidden_layers" in PLM/bert-base-cased/config.json to 1

2.3. Training and Testing

Train QIPP with GQE:

python main.py --dataset NELL-betae --model_name geo
python main.py --dataset FB15k-237-betae --model_name geo
python main.py --dataset FB15k-betae --model_name geo

Train QIPP with Q2B:

python main.py --dataset NELL-betae --model_name box
python main.py --dataset FB15k-237-betae --model_name box
python main.py --dataset FB15k-betae --model_name box

Train QIPP with BetaE:

python main.py --dataset NELL-betae --model_name beta
python main.py --dataset FB15k-237-betae --model_name beta
python main.py --dataset FB15k-betae --model_name beta

Train QIPP with ConE:

python main.py --dataset NELL-betae --model_name cone
python main.py --dataset FB15k-237-betae --model_name cone
python main.py --dataset FB15k-betae --model_name cone

Train QIPP with MLP2Vec:

python main.py --dataset NELL-betae --model_name mlp2vec
python main.py --dataset FB15k-237-betae --model_name mlp2vec
python main.py --dataset FB15k-betae --model_name mlp2vec

Train QIPP with FuzzQE:

python main.py --dataset NELL-betae --model_name fuzzy
python main.py --dataset FB15k-237-betae --model_name fuzzy
python main.py --dataset FB15k-betae --model_name fuzzy

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages