Source code for the paper "UAC-AD: Unsupervised Adversarial Contrastive Learning for Anomaly Detection on Multi-source Data"
We support python3.x $ pip install -r requirements.txt
The result records are in the result21 directory.
cd codes && python run.py
Raw data for Dataset A: https://doi.org/10.5281/zenodo.7609780. The metric types for Dataset A include CPU status, memory status, IO status, and network status. The log type for Dataset A is Spark runtime logs.
Raw data for Dataset B: https://github.com/CloudWise-OpenSource/GAIA-DataSet/tree/main/MicroSS. The Dataset B is mainly comes from a scenario in the business simulation system, MicroSS, owned by Cloudwise. It comes from a scenario of logging-in with QR Code.
The data type for Dataset C is restricted due to confidentiality requirements and is not disclosed at this time.
.
βββ README.md
βββ codes
βΒ Β βββ common
βΒ Β βΒ Β βββ __init__.py
βΒ Β βΒ Β βββ data_loads.py
βΒ Β βΒ Β βββ data_processing.py
βΒ Β βΒ Β βββ data_processing_utils.py
βΒ Β βΒ Β βββ semantics.py
βΒ Β βΒ Β βββ utils.py
βΒ Β βββ data_analysis.py
βΒ Β βββ gpu0.sh
βΒ Β βββ gpu1.sh
βΒ Β βββ models
βΒ Β βΒ Β βββ basev3.py
βΒ Β βΒ Β βββ fuse_v3.py
βΒ Β βΒ Β βββ kpi_model_v3.py
βΒ Β βΒ Β βββ log_model_v3.py
βΒ Β βΒ Β βββ utils.py
βΒ Β βββ run.py
βββ data
βΒ Β βββ chunk_10
βΒ Β βββ test.pkl
βΒ Β βββ train.pkl
βΒ Β βββ unlabel.pkl
βΒ Β βββ unsupervised.pkl
βββ requirements.txt
βββ result21
βββ main_result.png
βββ overview.png
βββ test.txt