Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Source code for the paper "UAC-AD: Unsupervised Adversarial Contrastive Learning for Anomaly Detection on Multi-source Data"

Notifications You must be signed in to change notification settings

lhysgithub/UAC-AD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

5 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

UAC-AD

Source code for the paper "UAC-AD: Unsupervised Adversarial Contrastive Learning for Anomaly Detection on Multi-source Data"

Environment

We support python3.x $\geq$ 3.7. The environment can be built by: $ pip install -r requirements.txt

Result records

The result records are in the result21 directory.

Reproducing UAD by running:

cd codes && python run.py

The overview of UAC-AD

Main Result

Experiment data types

Raw data for Dataset A: https://doi.org/10.5281/zenodo.7609780. The metric types for Dataset A include CPU status, memory status, IO status, and network status. The log type for Dataset A is Spark runtime logs.

Raw data for Dataset B: https://github.com/CloudWise-OpenSource/GAIA-DataSet/tree/main/MicroSS. The Dataset B is mainly comes from a scenario in the business simulation system, MicroSS, owned by Cloudwise. It comes from a scenario of logging-in with QR Code.

The data type for Dataset C is restricted due to confidentiality requirements and is not disclosed at this time.

Tree

.
β”œβ”€β”€ README.md
β”œβ”€β”€ codes
β”‚Β Β  β”œβ”€β”€ common
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ __init__.py
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ data_loads.py
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ data_processing.py
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ data_processing_utils.py
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ semantics.py
β”‚Β Β  β”‚Β Β  └── utils.py
β”‚Β Β  β”œβ”€β”€ data_analysis.py
β”‚Β Β  β”œβ”€β”€ gpu0.sh
β”‚Β Β  β”œβ”€β”€ gpu1.sh
β”‚Β Β  β”œβ”€β”€ models
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ basev3.py
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ fuse_v3.py
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ kpi_model_v3.py
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ log_model_v3.py
β”‚Β Β  β”‚Β Β  └── utils.py
β”‚Β Β  └── run.py
β”œβ”€β”€ data
β”‚Β Β  └── chunk_10
β”‚Β Β      β”œβ”€β”€ test.pkl
β”‚Β Β      β”œβ”€β”€ train.pkl
β”‚Β Β      β”œβ”€β”€ unlabel.pkl
β”‚Β Β      └── unsupervised.pkl
β”œβ”€β”€ requirements.txt
└── result21
    β”œβ”€β”€ main_result.png
    β”œβ”€β”€ overview.png
    └── test.txt

About

Source code for the paper "UAC-AD: Unsupervised Adversarial Contrastive Learning for Anomaly Detection on Multi-source Data"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published