Thanks to visit codestin.com
Credit goes to github.com

Skip to content
/ GEGCN Public

Generative Essential Graph Convolutional Network for Multi-view Semi-supervised Classification. IEEE TMM.

Notifications You must be signed in to change notification settings

long319/GEGCN

Repository files navigation

Generative Essential Graph Convolutional Network for Multi-view Semi-supervised Classification

==== This is the Pytorch implementation of GEGCN proposed in our paper: framework

Requirement

  • Python == 3.9.12
  • PyTorch == 1.11.0
  • Numpy == 1.21.5
  • Scikit-learn == 1.1.0
  • Scipy == 1.8.0
  • Texttable == 1.6.4
  • Tqdm == 4.64.0

Usage

python train_and_test.py
  • --device: gpu number or 'cpu'.
  • --path: path of datasets.
  • --dataset: name of datasets.
  • --seed: random seed.
  • --fix_seed: fix the seed or not.
  • --n_repeated: number of repeat times.
  • --lr: learning rate.
  • --weight_decay: weight decay.
  • --ratio: label ratio.
  • --num_epoch: number of training epochs.
  • --knns: hyperparameter of the number of neighbors $k$.
  • --theta: Initialize the learnable parameter $\theta_1$ and $\theta_2$.

All the configs are set as default, so you only need to set dataset. For example:

python train_and_test.py --dataset HW

Reference

@ARTICLE{10462517,
  author={Lu, Jielong and Wu, Zhihao and Zhong, Luying and Chen, Zhaoliang and Zhao, Hong and Wang, Shiping},
  journal={IEEE Transactions on Multimedia}, 
  title={Generative Essential Graph Convolutional Network for Multi-View Semi-Supervised Classification}, 
  year={2024},
  volume={26},
  number={},
  pages={7987-7999},
  doi={10.1109/TMM.2024.3374579}}

About

Generative Essential Graph Convolutional Network for Multi-view Semi-supervised Classification. IEEE TMM.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages