====
This is the Pytorch implementation of GEGCN proposed in our paper:
- Python == 3.9.12
- PyTorch == 1.11.0
- Numpy == 1.21.5
- Scikit-learn == 1.1.0
- Scipy == 1.8.0
- Texttable == 1.6.4
- Tqdm == 4.64.0
python train_and_test.py
- --device: gpu number or 'cpu'.
- --path: path of datasets.
- --dataset: name of datasets.
- --seed: random seed.
- --fix_seed: fix the seed or not.
- --n_repeated: number of repeat times.
- --lr: learning rate.
- --weight_decay: weight decay.
- --ratio: label ratio.
- --num_epoch: number of training epochs.
- --knns: hyperparameter of the number of neighbors
$k$ . - --theta: Initialize the learnable parameter
$\theta_1$ and$\theta_2$ .
All the configs are set as default, so you only need to set dataset. For example:
python train_and_test.py --dataset HW
@ARTICLE{10462517,
author={Lu, Jielong and Wu, Zhihao and Zhong, Luying and Chen, Zhaoliang and Zhao, Hong and Wang, Shiping},
journal={IEEE Transactions on Multimedia},
title={Generative Essential Graph Convolutional Network for Multi-View Semi-Supervised Classification},
year={2024},
volume={26},
number={},
pages={7987-7999},
doi={10.1109/TMM.2024.3374579}}