Implementation of ECMGD in our paper: Towards Multi-view Consistent Graph Diffusion, ACM MM 2024.
==== This is the Pytorch implementation of ECMGD proposed in our paper:
- Python == 3.9.12
- PyTorch == 2.2.2
- Numpy == 1.24.1
- Scikit-learn == 1.4.1
- Scipy == 1.12.0
- Texttable == 1.7.0
- Tqdm == 4.64.2
Unzip the dataset files
unzip ./data/datasets.7z
For multi-view semi-supervised classification task, run
python main.py --dataset BDGP
For heterogeneous graph node classification task, run
python main_Iso.py --dataset ACM
For incomplete multi-view semi-supervised classification task, run
python main.py --dataset BDGP --Miss_rate 0.1
Note that the default parameters may not be the best to reproduce our results in the paper.
Please unzip the datasets folders saved in ./data/HeteGraph.7z and ./data/Multi-view.7z first.
data/
│
├── Multi-view/
│ ├── BDGP.mat
│ ├── HW.mat
│ ├── MNIST10k.mat
│
└── HeteGraph/
├── IMDB
├── YELP
└── ACM
@inproceedings{10.1145/3664647.3681258,
author = {Lu, Jielong and Wu, Zhihao and Chen, Zhaoliang and Cai, Zhiling and Wang, Shiping},
title = {Towards Multi-view Consistent Graph Diffusion},
year = {2024},
doi = {10.1145/3664647.3681258},
booktitle = {Proceedings of the 32nd ACM International Conference on Multimedia},
pages = {186–195},
}