Unified management and routing for llama.cpp, MLX and vLLM models with web dashboard.
- Multiple Model Serving: Run different models simultaneously (7B for speed, 70B for quality)
- On-Demand Instance Start: Automatically launch instances upon receiving API requests
- State Persistence: Ensure instances remain intact across server restarts
- OpenAI API Compatible: Drop-in replacement - route requests by instance name
- Multi-Backend Support: Native support for llama.cpp, MLX (Apple Silicon optimized), and vLLM
- Docker Support: Run backends in containers
- Web Dashboard: Modern React UI for visual management (unlike CLI-only tools)
- API Key Authentication: Separate keys for management vs inference access
- Instance Monitoring: Health checks, auto-restart, log management
- Smart Resource Management: Idle timeout, LRU eviction, and configurable instance limits
- Environment Variables: Set custom environment variables per instance for advanced configuration
- Remote Node Support: Deploy instances on remote hosts
- Central Management: Manage remote instances from a single dashboard
- Seamless Routing: Automatic request routing to remote instances
# 1. Install backend (one-time setup)
# For llama.cpp: https://github.com/ggml-org/llama.cpp#quick-start
# For MLX on macOS: pip install mlx-lm
# For vLLM: pip install vllm
# Or use Docker - no local installation required
# 2. Download and run llamactl
LATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '"tag_name":' | sed -E 's/.*"([^"]+)".*/\1/')
curl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-linux-amd64.tar.gz | tar -xz
sudo mv llamactl /usr/local/bin/
# 3. Start the server
llamactl
# Access dashboard at http://localhost:8080
- Open http://localhost:8080
- Click "Create Instance"
- Choose backend type (llama.cpp, MLX, or vLLM)
- Set model path and backend-specific options
- Configure environment variables if needed (optional)
- Start or stop the instance
# Create llama.cpp instance
curl -X POST localhost:8080/api/v1/instances/my-7b-model \
-H "Authorization: Bearer your-key" \
-d '{"backend_type": "llama_cpp", "backend_options": {"model": "/path/to/model.gguf", "gpu_layers": 32}}'
# Create MLX instance (macOS)
curl -X POST localhost:8080/api/v1/instances/my-mlx-model \
-H "Authorization: Bearer your-key" \
-d '{"backend_type": "mlx_lm", "backend_options": {"model": "mlx-community/Mistral-7B-Instruct-v0.3-4bit"}}'
# Create vLLM instance with environment variables
curl -X POST localhost:8080/api/v1/instances/my-vllm-model \
-H "Authorization: Bearer your-key" \
-d '{"backend_type": "vllm", "backend_options": {"model": "microsoft/DialoGPT-medium", "tensor_parallel_size": 2}, "environment": {"CUDA_VISIBLE_DEVICES": "0,1", "NCCL_DEBUG": "INFO"}}'
# Use with OpenAI SDK
curl -X POST localhost:8080/v1/chat/completions \
-H "Authorization: Bearer your-key" \
-d '{"model": "my-7b-model", "messages": [{"role": "user", "content": "Hello!"}]}'
# Linux/macOS - Get latest version and download
LATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '"tag_name":' | sed -E 's/.*"([^"]+)".*/\1/')
curl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-$(uname -s | tr '[:upper:]' '[:lower:]')-$(uname -m).tar.gz | tar -xz
sudo mv llamactl /usr/local/bin/
# Or download manually from the releases page:
# https://github.com/lordmathis/llamactl/releases/latest
# Windows - Download from releases page
# Clone repository and build Docker images
git clone https://github.com/lordmathis/llamactl.git
cd llamactl
mkdir -p data/llamacpp data/vllm models
# Build and start llamactl with llama.cpp CUDA backend
docker-compose -f docker/docker-compose.yml up llamactl-llamacpp -d
# Build and start llamactl with vLLM CUDA backend
docker-compose -f docker/docker-compose.yml up llamactl-vllm -d
# Build from source using multi-stage build
docker build -f docker/Dockerfile.source -t llamactl:source .
Features: CUDA support, automatic latest release installation, no backend dependencies. Note: Dockerfiles are configured for CUDA. Adapt base images for other platforms (CPU, ROCm, etc.).
For detailed Docker setup and configuration, see the Installation Guide.
Requires Go 1.24+ and Node.js 22+
git clone https://github.com/lordmathis/llamactl.git
cd llamactl
cd webui && npm ci && npm run build && cd ..
go build -o llamactl ./cmd/server
For llama.cpp backend:
You need llama-server
from llama.cpp installed:
# Homebrew (macOS)
brew install llama.cpp
# Or build from source - see llama.cpp docs
# Or use Docker - no local installation required
For MLX backend (macOS only): You need MLX-LM installed:
# Install via pip (requires Python 3.8+)
pip install mlx-lm
# Or in a virtual environment (recommended)
python -m venv mlx-env
source mlx-env/bin/activate
pip install mlx-lm
For vLLM backend: You need vLLM installed:
# Install via pip (requires Python 3.8+, GPU required)
pip install vllm
# Or in a virtual environment (recommended)
python -m venv vllm-env
source vllm-env/bin/activate
pip install vllm
# Or use Docker - no local installation required
llamactl can run backends in Docker containers:
backends:
llama-cpp:
docker:
enabled: true
vllm:
docker:
enabled: true
Requirements: Docker installed and running. For GPU support: nvidia-docker2 (Linux) or Docker Desktop with GPU support.
For detailed Docker configuration options, see the Configuration Guide.
llamactl works out of the box with sensible defaults.
server:
host: "0.0.0.0" # Server host to bind to
port: 8080 # Server port to bind to
allowed_origins: ["*"] # Allowed CORS origins (default: all)
allowed_headers: ["*"] # Allowed CORS headers (default: all)
enable_swagger: false # Enable Swagger UI for API docs
backends:
llama-cpp:
command: "llama-server"
args: []
environment: {} # Environment variables for the backend process
docker:
enabled: false
image: "ghcr.io/ggml-org/llama.cpp:server"
args: ["run", "--rm", "--network", "host", "--gpus", "all"]
environment: {} # Environment variables for the container
vllm:
command: "vllm"
args: ["serve"]
environment: {} # Environment variables for the backend process
docker:
enabled: false
image: "vllm/vllm-openai:latest"
args: ["run", "--rm", "--network", "host", "--gpus", "all", "--shm-size", "1g"]
environment: {} # Environment variables for the container
mlx:
command: "mlx_lm.server"
args: []
environment: {} # Environment variables for the backend process
instances:
port_range: [8000, 9000] # Port range for instances
data_dir: ~/.local/share/llamactl # Data directory (platform-specific, see below)
configs_dir: ~/.local/share/llamactl/instances # Instance configs directory
logs_dir: ~/.local/share/llamactl/logs # Logs directory
auto_create_dirs: true # Auto-create data/config/logs dirs if missing
max_instances: -1 # Max instances (-1 = unlimited)
max_running_instances: -1 # Max running instances (-1 = unlimited)
enable_lru_eviction: true # Enable LRU eviction for idle instances
default_auto_restart: true # Auto-restart new instances by default
default_max_restarts: 3 # Max restarts for new instances
default_restart_delay: 5 # Restart delay (seconds) for new instances
default_on_demand_start: true # Default on-demand start setting
on_demand_start_timeout: 120 # Default on-demand start timeout in seconds
timeout_check_interval: 5 # Idle instance timeout check in minutes
auth:
require_inference_auth: true # Require auth for inference endpoints
inference_keys: [] # Keys for inference endpoints
require_management_auth: true # Require auth for management endpoints
management_keys: [] # Keys for management endpoints
For detailed configuration options including environment variables, file locations, and advanced settings, see the Configuration Guide.
MIT License - see LICENSE file.