Thanks to visit codestin.com
Credit goes to github.com

Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
126 changes: 66 additions & 60 deletions src/sdk/python/rtdip_sdk/pipelines/destinations/spark/pcdm_to_delta.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@ class ValueTypeConstants():
FLOAT_VALUE = "ValueType = 'float'"
STRING_VALUE = "ValueType = 'string'"


class SparkPCDMToDeltaDestination(DestinationInterface):
'''
The Process Control Data Model written to Delta
Expand Down Expand Up @@ -123,71 +122,78 @@ def _get_eventdate_string(self, df: DataFrame) -> str:
dates_list = list(dates_df.toPandas()["EventDate"])
return str(dates_list).replace('[','').replace(']','')

def _write_delta_batch(self, df: DataFrame, destination: str):
def _write_delta_merge(self, df: DataFrame, destination: str):
df = df.select("EventDate", "TagName", "EventTime", "Status", "Value", "ChangeType")
when_matched_update_list = [
DeltaMergeConditionValues(
condition="(source.ChangeType IN ('insert', 'update', 'upsert')) AND ((source.Status != target.Status) OR (source.Value != target.Value))",
values={
"EventDate": "source.EventDate",
"TagName": "source.TagName",
"EventTime": "source.EventTime",
"Status": "source.Status",
"Value": "source.Value"
}
)
]
when_matched_delete_list = [
DeltaMergeCondition(
condition="source.ChangeType = 'delete'"
)
]
when_not_matched_insert_list = [
DeltaMergeConditionValues(
condition="(source.ChangeType IN ('insert', 'update', 'upsert'))",
values={
"EventDate": "source.EventDate",
"TagName": "source.TagName",
"EventTime": "source.EventTime",
"Status": "source.Status",
"Value": "source.Value"
}
)
]

merge_condition = "source.EventDate = target.EventDate AND source.TagName = target.TagName AND source.EventTime = target.EventTime"

if self.merge == True:
df = df.select("EventDate", "TagName", "EventTime", "Status", "Value", "ChangeType")
when_matched_update_list = [
DeltaMergeConditionValues(
condition="(source.ChangeType IN ('insert', 'update', 'upsert')) AND ((source.Status != target.Status) OR (source.Value != target.Value))",
values={
"EventDate": "source.EventDate",
"TagName": "source.TagName",
"EventTime": "source.EventTime",
"Status": "source.Status",
"Value": "source.Value"
}
)
]
when_matched_delete_list = [
DeltaMergeCondition(
condition="source.ChangeType = 'delete'"
)
]
when_not_matched_insert_list = [
DeltaMergeConditionValues(
condition="(source.ChangeType IN ('insert', 'update', 'upsert'))",
values={
"EventDate": "source.EventDate",
"TagName": "source.TagName",
"EventTime": "source.EventTime",
"Status": "source.Status",
"Value": "source.Value"
}
)
]
perform_merge = True
if self.try_broadcast_join != True:
eventdate_string = self._get_eventdate_string(df)
if eventdate_string == None or eventdate_string == "":
perform_merge = False
else:
merge_condition = "target.EventDate in ({}) AND ".format(eventdate_string) + merge_condition

merge_condition = "source.EventDate = target.EventDate AND source.TagName = target.TagName AND source.EventTime = target.EventTime"

perform_merge = True
if self.try_broadcast_join != True:
eventdate_string = self._get_eventdate_string(df)
if eventdate_string == None or eventdate_string == "":
perform_merge = False
else:
merge_condition = "target.EventDate in ({}) AND ".format(eventdate_string) + merge_condition
if perform_merge == True:
SparkDeltaMergeDestination(
spark=self.spark,
data=df,
destination=destination,
options=self.options,
merge_condition=merge_condition,
when_matched_update_list=when_matched_update_list,
when_matched_delete_list=when_matched_delete_list,
when_not_matched_insert_list=when_not_matched_insert_list,
try_broadcast_join=self.try_broadcast_join,
trigger=self.trigger,
query_name=self.query_name
).write_batch()

if perform_merge == True:
delta = SparkDeltaMergeDestination(
spark=self.spark,
data=df,
destination=destination,
options=self.options,
merge_condition=merge_condition,
when_matched_update_list=when_matched_update_list,
when_matched_delete_list=when_matched_delete_list,
when_not_matched_insert_list=when_not_matched_insert_list,
try_broadcast_join=self.try_broadcast_join
)
def _write_delta_batch(self, df: DataFrame, destination: str):

if self.merge == True:
self._write_delta_merge(df.filter(col("ChangeType").isin('insert', 'update', 'upsert')), destination)
self._write_delta_merge(df.filter(col("ChangeType") == 'delete'), destination)
else:
df = df.select("TagName", "EventTime", "Status", "Value")
delta = SparkDeltaDestination(
SparkDeltaDestination(
data=df,
destination=destination,
options=self.options
)

delta.write_batch()
options=self.options,
mode=self.mode,
trigger=self.trigger,
query_name=self.query_name
).write_batch()

def _write_data_by_type(self, df: DataFrame):
if self.merge == True:
Expand All @@ -197,7 +203,7 @@ def _write_data_by_type(self, df: DataFrame):
df = df.withColumn("EventTime", (floor(col("EventTime").cast("double")*1000)/1000).cast("timestamp"))

if self.remove_duplicates == True:
df = df.drop_duplicates(["TagName", "EventTime"])
df = df.drop_duplicates(["TagName", "EventTime", "ChangeType"])

float_df = (
df
Expand Down