Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Augmented Image Generator for CNN, RNN , YOLO (CRY) models

License

ragulnathMB/GENxCRY

Repository files navigation

GENxCRY - Augmented Image Dataset Generator

By RN Software

Generate artificial images from a small amount of input images with advanced annotation and augmentation capabilities.

Key Features

🎯 Annotation Tools

  • Bounding Box Annotation: Draw rectangles around objects
  • Labeling Annotation: Add text labels to objects
  • Segmentation Annotation: Freestyle pen drawing for precise object boundaries

📊 Dataset Export Formats

  • YOLO format
  • COCO format
  • CNN format
  • RNN format

🔄 Advanced Augmentation Pipeline

  • Geometric Variations: Rotation, flipping, shearing, translation, scaling
  • Visual Effects: Brightness, contrast adjustments
  • Image Effects: Blurring, shadows, lighting, glare, reflections
  • Background Noise: Custom backgrounds, random textures, salt & pepper noise, Gaussian noise, scribbled/cluttered backgrounds

🎲 Smart Object Mixing

  • Randomly mix objects from different input images
  • Intelligent positioning to ensure visibility
  • Configurable object density and spacing

Installation

  1. Clone this repository
  2. Install dependencies:
pip install -r requirements.txt

Usage

  1. Run the application:
python main.py
  1. Follow the pipeline:
    • Select input images
    • Choose annotation types
    • Annotate objects in each image
    • Select augmentation options
    • Configure dataset size and export format
    • Generate your dataset!

📺 Video Demo

GENxCRY Demo Video

📸 Screenshots

1. Main Interface - Image Selection & Annotation Types

Main Interface Clean and intuitive main interface showing the pipeline stages and annotation type selection

2. Image Browser - Loading Input Images

Image Browser Browse and select images from your local system with thumbnail preview

3. Advanced Annotation Tools

Annotation Interface Professional annotation interface with bounding box, labeling, and segmentation tools for precise object marking

4. Dataset Generation Progress

Dataset Generation Real-time progress tracking during dataset generation with configuration options and augmentation settings

5. Generated Dataset Results

Generated Images Gallery view of the generated augmented dataset showing various transformations and object combinations

Pipeline Stages

  1. Image Selection: Choose images from your local system
  2. Annotation: Draw bounding boxes, segments, and add labels
  3. Augmentation Configuration: Select desired variations
  4. Dataset Generation: Specify output size and format

Requirements

  • Python 3.8+
  • OpenCV
  • scikit-image

Project Structure

GENxCRY/
├── main.py                 # Application entry point
├── requirements.txt        # Python dependencies
├── run.bat                # Windows startup script
├── run.sh                 # Linux/Mac startup script
├── gui/                   # User interface modules
│   ├── main_window.py     # Main application window
│   ├── image_selection.py # Image selection interface
│   ├── annotation_window.py # Annotation tools
│   ├── augmentation_config.py # Augmentation settings
│   └── dataset_generation.py # Generation interface
├── core/                  # Core functionality
│   ├── dataset_generator.py # Main generation engine
│   ├── augmentation_engine.py # Image augmentation
│   └── export_formats.py # Format exporters
├── examples/              # Documentation and examples
│   └── sample_workflow.md # Step-by-step guide
└── LICENSE               # MIT License

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

Support

For issues and questions:

  • Create an issue on GitHub
  • Contact: RN Software

License

MIT License - see LICENSE file for details.

Created by RN with ❤️ for the Dev community.

About

Augmented Image Generator for CNN, RNN , YOLO (CRY) models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published