Thanks to visit codestin.com
Credit goes to github.com

Skip to content

rainstonee/ADCM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ADCM

To run ADCM, just run the following command:

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --master_port=12623 --use_env ct_train.py --outdir=ct-runs --data=datasets/cifar10-32x32.zip --cond=0 --arch=ddpmpp --metrics=fid50k_full --transfer=datasets/edm-cifar10-32x32-uncond-vp.pkl --duration=12.8 --tick=12.8 --double=250 --batch=128 --lr=0.0001 --optim=RAdam --dropout=0.3 --augment=0.0 --mode=tuning --loss_type=ADCM

Datasets and pretrained-DMs can be found at1.

Add

--lambda=xxx

to the command if you want to change the Lagrange multiplier.

Reproduction

We have reproduced the codes of ECM2, sCM3, iCT4, CT5, and CD5. The code for ECM is from 6. Our reproduction does not include adaptive weighting and tangent warmup in sCM, as we find they may lead to performance degradation.

If you would like to use our reproduction code, you can simply change replace the loss_type to ECM/SCM/ICT/CT/CD. For example, if you want to run sCM, run the following command:

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --master_port=12623 --use_env ct_train.py --outdir=ct-runs --data=datasets/cifar10-32x32.zip --cond=0 --arch=ddpmpp --metrics=fid50k_full --transfer=datasets/edm-cifar10-32x32-uncond-vp.pkl --duration=12.8 --tick=12.8 --double=250 --batch=128 --lr=0.0001 --optim=RAdam --dropout=0.3 --augment=0.0 --mode=tuning --loss_type=SCM

Footnotes

  1. https://github.com/NVlabs/edm

  2. Geng Z, Pokle A, Luo W, et al. Consistency models made easy[J]. arXiv preprint arXiv:2406.14548, 2024.

  3. Lu C, Song Y. Simplifying, stabilizing and scaling continuous-time consistency models[J]. arXiv preprint arXiv:2410.11081, 2024.

  4. Song Y, Dhariwal P. Improved Techniques for Training Consistency Models[C]//The Twelfth International Conference on Learning Representations.

  5. Song Y, Dhariwal P, Chen M, et al. Consistency Models[C]//International Conference on Machine Learning. PMLR, 2023: 32211-32252. 2

  6. https://github.com/locuslab/ect

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages