Thanks to visit codestin.com
Credit goes to github.com

Skip to content

R package for sparse group principal component analysis with double thresholding algorithm

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

statsqixu/SGPCA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SGPCA: Sparse Group Principal Component Analysis

Overview

SGPCA is an R package that implements Sparse Group Principal Component Analysis using a double thresholding algorithm. This method combines both individual and group-level sparsity in principal component analysis, making it particularly effective for analyzing high-dimensional data with natural group structures (e.g., gene expression data across cell types).

Features

  • Double Thresholding Algorithm: Implements both individual and group-level sparsity
  • Flexible PC Estimation: Support for single or multiple principal components
  • Parameter Tuning: Includes resampling-based automatic parameter selection
  • Interactive Mode: Offers manual parameter selection with visualization
  • Built-in Simulators: Three different simulation settings for testing and validation

Installation

install.packages("devtools")
devtools::install_github("statsqixu/SGPCA")

Example

library(SGPCA)

# Generate data
data <- simulator1(n = 100, G = 300, C = C, seed = seed)
X <- data$X
group_label <- data$group_label
signal_indices <- data$signal_indices
pc1 <- data$pc1

# Estimate the first PC via SGPCA and select tuning parameters via resampling
SGPCA_results <- SGPCA.rs(X, group_label, J = 1, B = 20, rho = 0.5,
                                    tau_range = 10 ^ seq(-2, 3, length.out = 20),
                                    eta_range = 10 ^ seq(-2, 3, length.out = 20),
                                    max_iter = 20, tol = 1e-5, verbose = FALSE, mode = "auto")

References

[To be updated]

About

R package for sparse group principal component analysis with double thresholding algorithm

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published