This project implements a web research based agentic RAG application using CrewAI, Tavily, and Trafilatura with structured multi-agent reasoning. It includes web search, content parsing, context synthesis, and final summarization using an LLM.
- Web Search Agent using Tavily
- Content Fetcher Agent to download & parse articles with
trafilatura - Context Generator saving rich content to
context_output.md - Final Answer Agent generating summaries from parsed context
- Fully modular
CrewAIagent-task pipeline
pip install -r requirements.txtCreate a .env file:
TAVILY_API_KEY=your_tavily_key
GROQ_API_KEY=your_groq_keypython3 -m agentYou’ll be prompted for a research query. The assistant will:
- Search the web via Tavily
- Fetch & parse top links
- Format the content using
trafilatura - Save it to
context_output.md - Generate a final structured summary saved/displayed from
research_output.md
├── agent.py # Entrypoint
├── requirements.txt # Dependencies
└── .env # Environment variables
- gemma2-9b-it
- meta-llama/llama-4-scout-17b-16e-instruct
- llama-3.3-70b-versatile