##IPython notebooks
rank_markov.ipynbIPython notebook to recommend trajectories using methods described in paper.parse_results.ipynbIPython notebook to generate performance tables (Table 3 and Table 4 in paper) using dumped results.
##Dataset
data/poi-Edin.csvPOI data in Edinburgh.poiIDPOI identitypoiCatPOI categorypoiLonPOI longitudepoiLatPOI latitude
data/traj-Edin.csvTrajectories in Edinburgh.userIDUser identitytrajIDTrajectory identitypoiIDPOI identitystartTimeTimestamp that the user started to visit this POIendTimeTimestamp that the user left this POI#photoNumber of photos taken by the user at this POItrajLenNumber of POIs visited in this trajectory by the userpoiDurationThe visit duration (seconds) at this POI by the user
data/poi-Glas.csvPOI data in Glasgow.data/traj-Glas.csvTrajectories in Glasgow.data/poi-Melb.csvPOI data in Melbourne.data/traj-Melb.csvTrajectories in Melbourne.data/poi-Osak.csvPOI data in Osaka.data/traj-Osak.csvTrajectories in Osaka.data/poi-Toro.csvPOI data in Toronto.data/traj-Toro.csvTrajectories in Toronto.data/rand-*.pklDumped recommendations by methodRandomdescribed in paper.data/rank-*.pklDumped recommendations by methodsPoiPopularityandPoiRankdescribed in paper.data/tran-*.pklDumped recommendations by methodsMarkovandMarkovPathdescribed in paper.data/comb-*.pklDumped recommendations by methodsRank+MarkovandRank+MarkovPathdescribed in paper.data/ijcai-*.pklDumped recommendations by methodPersTourproposed in this paper and its variantPersTour-L.
##Usage To generate recommendations from scratch, please follow these four steps:
- Install rankSVM implementations and assign the directory/path to variable
ranksvm_dirin notebookrank_markov.ipynb. - Install Python modules imported in notebook
rank_markov.ipynb. - Modify the value of dataset index variable
dat_ix(feasible values:0, 1, 2, 3, 4) to run notebookrank_markov.ipynbon different dataset, results (.pkl file) will be saved in the directory specified by variabledata_dir. - After running notebook
rank_markov.ipynbon all 5 datasets, please run notebookparse_results.ipynbto generate Table 3 and Table 4 in paper.
##Citation Please cite these two papers if you use this dataset in your work.
- Kwan Hui Lim, Jeffrey Chan, Christopher Leckie and Shanika Karunasekera. "Personalized Tour Recommendation based on User Interests and Points of Interest Visit Durations". In Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI'15). 2015.
- Dawei Chen, Cheng Soon Ong and Lexing Xie. "Learning Points and Routes to Recommend Trajectories". In Proceedings of the 25th ACM International Conference on Information and Knowledge Management (CIKM'16). 2016.