First, CTLearn installation is required. Installation can be carried out from source:
CTLEARN_VER=0.6.0
git clone https://github.com/ctlearn-project/ctlearn
cd ctlearn
conda env create -f environment-gpu.yml
conda activate ctlearn
pip install ctlearn==$CTLEARN_VER
Or simply:
CTLEARN_VER=0.6.0
mode=gpu
wget https://raw.githubusercontent.com/ctlearn-project/ctlearn/v$CTLEARN_VER/environment-$mode.yml
conda env create -n [ENVIRONMENT_NAME] -f environment-$mode.yml
conda activate [ENVIRONMENT_NAME]
pip install ctlearn==$CTLEARN_VER
ctlearn -h
Additionally, the following installation is necessary:
pip install tensorflow-addonspip install --upgrade matplotlibpip install wandb(afterwards runwandb loginand log in)
First, update GANs.yml (and predictor.yml if no predefined model is used as a predictor). Possible labels are 'particletype', 'energy' and 'direction'. To train the models, simply run main.py and introduce the path to GANs.yml.