Thanks to visit codestin.com
Credit goes to github.com

Skip to content

shin1985/ml-env

Repository files navigation

Purpose

This docker setting is for tring to touch and test some machine learning.

Installed main softwares

  • Tensorflow 1.1.0
  • Chainer 1.19.0
  • Scikit-learn 0.18.1
  • Gensim 2.0.0
  • Word2vec 0.9.1
  • Numpy 1.12.1
  • Pandas 0.19.2
  • Jupyter 4.3.0
  • Matplotlib 2.0.0
  • Mecab latest
  • Juman++ 7.01
  • Keras 2.0.4
  • NLTK 3.2.2
  • TFLearn 0.3

and other dependent libraries.

Password

Please update passwords(default is "ml" for following).

  • ml user password
  • ipyton password(jupyter_notebook_config.py)

How to run docker image

# Build image
# This image requires more than 13 GB disk space
docker build -t zuqqhi2/ml-python-sandbox .

# Run jupyter notebook & tensorboard
docker run -it -p 8888:8888 -p 6006:6006 zuqqhi2/ml-python-sandbox

# Login container
docker run -it -p 8888:8888 -p 6006:6006 zuqqhi2/ml-python-sandbox /bin/bash
source ~/.bash_profile
mlact

# Set japanese locale
export LANG=ja_JP.UTF-8
export LC_ALL=ja_JP.UTF-8
export LC_CTYPE=ja_JP.UTF-8

Change Log from 1.0.3

  • 1.1.0
    • New Library/Tool : Seaborn, TFLearn, TFGraphviz, Tensorboard
    • Others : samples.ipynb to introduce how to use libraries, start_webuis.sh to run jupyter notebook and tensorboard

TODO

  • Add "hmmlearn" to requirements.txt

References

About

for ML environment(Docker)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published