Thanks to visit codestin.com
Credit goes to github.com

Skip to content
/ psap Public
forked from vanheeringen-lab/psap

CLI interface for the PSAP classifier, Mierlo, G. van. Predicting protein condensate formation using machine learning (Manuscript in Preparation).

License

Notifications You must be signed in to change notification settings

simonvh/psap

 
 

Repository files navigation

psap

Documentation Status

CLI interface for the PSAP classifier, Mierlo, G. van. Predicting protein condensate formation using machine learning (Manuscript in Preparation).

  • Free software: MIT license

Getting Started

1. Install psap

git clone https://github.com/vanheeringen-lab/psap.git
cd psap && python setup.py install

2. Train classifier

psap train -f /path/to/peptide-trainingset.fasta  -o /output/directory

The trained RandomForest classifier is exported to json format and stored in the output directory.

3. Predict llps score for peptide instances

psap predict -m /path/to/model.json -f /path/to/peptid-testset.fasta -o /output/directory

When no model is provided (-m) psap loads the default classifier stored in /data/model.

4. Annotate petides (optional)

psap annotate -f /path/to/peptide.fasta -o /output/directory

Annotates a peptide fasta with biochemical features. This step is included in train and predict.

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

About

CLI interface for the PSAP classifier, Mierlo, G. van. Predicting protein condensate formation using machine learning (Manuscript in Preparation).

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%