S. Liu, S. Wang and L. Zhang, 2025. "Daily Land Surface Temperature Reconstruction in Landsat Cross-Track Areas Using Deep Ensemble Learning With Uncertainty Quantification," in IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2025.3643985.
Contact email: [email protected]
This is a GitHub repo at github.com/skrisliu/delag
git clone https://github.com/skrisliu/delag.git
cd delag
curl -L https://github.com/skrisliu/delag/releases/latest/download/nyc.7z -o nyc.7z
7z x ./nyc.7z -o./nyc
python nyc_task1_01.py # Run eATC, get 200 predictions.
python nyc_task1_02.py # Based on 200 predictions, Run GP. Run these commands in sequence (terminal/Anaconda Prompt):
conda create --name py39c python=3.9
conda activate py39c
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
pip install gpytorch==1.13
pip install numpy==1.26.4 (Folders are auto-created for each step)
- Unzip all Landsat data for the target year. [auto-create
unzipfolder] - (Optional, for ldn & hkg) Reproject data to the same UTM zone.
- Clip data to target UTM x/y bounds. [auto-create
clipfolder] - Reorder data files as
[YYYYMMDD]_[LC08/LC09](date_sensor). [auto-createorderfolder] - Build datacubes:
lsts,clearmasks,meanbands,era5lst. [auto-createdatacubefolder]
- NYC Dataset: nyc.7z
- NYC Predictions LST 2023: nyc_pred_2023.zip
- LDN Dataset: ldn.7z
- LDN Predictions LST 2023: ldn_pred_2023.zip
- HKG Dataset: hkg.7z
- HKG Predictions LST 2023: hkg_pred_2023.zip
- The NYC dataset is hosted via GitHub Releases: nyc.7z
- After downloading, unzip it to the
./nycfolder to run the scripts:
curl -L https://github.com/skrisliu/delag/releases/latest/download/nyc.7z -o nyc.7z
7z x ./nyc.7z -o./nycWe evaluate DELAG's performance across three experimental setups:
For a day with observed data, use another day's real-world cloud patterns
NYC: Predict index= 91, cloud index=155
LDN: Predict index=249, cloud index=169
HKG: Predict index=321, cloud index=177python nyc_task1_01.py # Run eATC, get 200 predictions.
python nyc_task1_02.py # Based on 200 predictions, Run GP. Reconstruction under heavily cloudy situations.
Indirectly evaluate performance through LST data's capability to estimate near-surface air temperature.
- The nyc.7z file should be downloaded and unzip to ./nyc
- Download the full prediction data [~1.6GB]
- Unzip to current folder
- Run nyc_task3_plot_airtemp.py to estimate air temperature from the predicted surface temperature.
# curl -L https://github.com/skrisliu/delag/releases/latest/download/nyc.7z -o nyc.7z
# 7z x ./nyc.7z -o./nyc
curl -L https://github.com/skrisliu/delag/releases/latest/download/nyc_pred_2023.zip -o nyc_pred_2023.zip
7z x nyc_pred_2023.zip
python nyc_task3_plot_airtemp.py✅ Dependencies
✅ Preprocessing Code
✅ Task #1: Clear-Sky Situations With Real-World Cloud Patterns
✅ Task #1: Data Ready
❌ Task #2: Under Heavily-Cloudy Situations
❌ Task #2: Data Ready
✅ Task #3: Indirect Validation via Near-Surface Air Temperature
✅ Task #3: Data Ready
Liu, Shengjie, Siqin Wang, Lu Zhang. Daily Land Surface Temperature Reconstruction in Landsat Cross-Track Areas Using Deep Ensemble Learning With Uncertainty. Quantification. IEEE Transactions on Geoscience and Remote Sensing, 2025. https://doi.org/10.1109/TGRS.2025.3643985
@article{liu2025daily,
author = {Liu, Shengjie and Wang, Siqin and Zhang, Lu},
title = {Daily Land Surface Temperature Reconstruction in Landsat Cross-Track Areas Using Deep Ensemble Learning With Uncertainty Quantification},
journal = {IEEE Transactions on Geoscience and Remote Sensing},
year = {2025},
doi = {10.1109/TGRS.2025.3643985}
}