Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Bayesian approach for pliable lasso for sparse interaction effects and missing data

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

tienmt/hspliable

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

hspliable

Bayesian inference for the pliable lasso model in the presence of missing response values. The pliable lasso model is a sparse model with sparse interaction effects. We also extend the pliable lasso to the case of GLMs.

This is based on the paper:
"Bayesian Pliable Lasso with Horseshoe Prior for Interaction Effects in GLMs with Missing Responses."

Installation

Install the package using:

devtools::install_github('tienmt/hspliable')

library(hspliable)

# simulate data
ntest <- 50
n <- 200 
p <- 10 
q <- 2

xx <- matrix(rnorm((n + ntest) * p), (n + ntest), p)
X <- xx[1:n, ]
xtest <- xx[-(1:n), ]
zz <- matrix(rnorm((n + ntest) * q), (n + ntest), q)
Z <- zz[1:n, ]
ztest <- zz[-(1:n), ]

beta_true <- c( 2,-2, 2, 2 , rep(0, p-4))

theta_true <- matrix(0, p, q)
theta_true[1:3, ] <- matrix( c(rep(1,q), 
                               rep(-2,q), 
                               c(1:q) ) , 3, q, byrow = TRUE)
theta0_true = 0.5
beta0_true = -1
yy <- beta0_true + zz %*% rep(theta0_true, q) + 
  rowSums(sapply(1:p, function(j) xx[, j] * (beta_true[j] + zz %*% theta_true[j, ] ))) +
  rnorm(n + ntest)
y <- yy[1:n]
ytest <- yy[-(1:n)]


library(hspliable)

# Try with pliable Horseshoe function
fit_pHS <- pliable_HS(y, X, Z, n_iter = 1000, burn_in = 500)
(be_HS_2 <- colMeans(fit_pHS$beta) )  
beta_true
(theta_HS_2 <- apply(fit_pHS$theta, c(1, 2), mean) )
theta_true

About

Bayesian approach for pliable lasso for sparse interaction effects and missing data

Topics

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published