Thanks to visit codestin.com
Credit goes to github.com

Skip to content

topepo/sparsediscrim

sparsediscrim

Lifecycle: experimental Codecov test coverage R-CMD-check

The R package sparsediscrim provides a collection of sparse and regularized discriminant analysis classifiers that are especially useful for when applied to small-sample, high-dimensional data sets.

Installation

You can install the stable version on CRAN:

install.packages('sparsediscrim', dependencies = TRUE)

If you prefer to download the latest version, instead type:

library(devtools)
install_github('ramhiser/sparsediscrim')

Classifiers

The sparsediscrim package features the following classifier (the R function is included within parentheses):

The sparsediscrim package also includes a variety of additional classifiers intended for small-sample, high-dimensional data sets. These include:

Classifier Author R Function
Diagonal Linear Discriminant Analysis Dudoit et al. (2002) lda_diag
Diagonal Quadratic Discriminant Analysis Dudoit et al. (2002) qda_diag
Shrinkage-based Diagonal Linear Discriminant Analysis Pang et al. (2009) lda_shrink_cov
Shrinkage-based Diagonal Quadratic Discriminant Analysis Pang et al. (2009) qda_shrink_cov
Shrinkage-mean-based Diagonal Linear Discriminant Analysis Tong et al. (2012) lda_shrink_mean
Shrinkage-mean-based Diagonal Quadratic Discriminant Analysis Tong et al. (2012) qda_shrink_mean
Minimum Distance Empirical Bayesian Estimator (MDEB) Srivistava and Kubokawa (2007) lda_emp_bayes
Minimum Distance Rule using Modified Empirical Bayes (MDMEB) Srivistava and Kubokawa (2007) lda_emp_bayes_eigen
Minimum Distance Rule using Moore-Penrose Inverse (MDMP) Srivistava and Kubokawa (2007) lda_eigen

We also include modifications to Linear Discriminant Analysis (LDA) with regularized covariance-matrix estimators:

  • Moore-Penrose Pseudo-Inverse (lda_pseudo)
  • Schafer-Strimmer estimator (lda_schafer)
  • Thomaz-Kitani-Gillies estimator (lda_thomaz)

About

Sparse and Regularized Discriminant Analysis

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Code of conduct

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages