Thanks to visit codestin.com
Credit goes to github.com

Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 3 additions & 4 deletions orbit/template/dlt.py
Original file line number Diff line number Diff line change
Expand Up @@ -751,10 +751,9 @@ def predict(
global_trend_level + global_trend_slope * idx * self._time_delta
)
elif self.global_trend_option == GlobalTrendOption.loglinear.name:
full_global_trend[
:, idx
] = global_trend_level + global_trend_slope * np.log(
1 + idx * self._time_delta
full_global_trend[:, idx] = (
global_trend_level
+ global_trend_slope * np.log(1 + idx * self._time_delta)
)
elif self.global_trend_option == GlobalTrendOption.logistic.name:
full_global_trend[:, idx] = self.global_floor + (
Expand Down
12 changes: 6 additions & 6 deletions orbit/template/ktrlite.py
Original file line number Diff line number Diff line change
Expand Up @@ -189,9 +189,9 @@ def set_init_values(self):
init_values = None
if len(self._seasonality) > 1 and self.num_of_regressors > 0:
init_values = dict()
init_values[
RegressionSamplingParameters.COEFFICIENTS_KNOT.value
] = np.zeros((self.num_of_regressors, self.num_knots_coefficients))
init_values[RegressionSamplingParameters.COEFFICIENTS_KNOT.value] = (
np.zeros((self.num_of_regressors, self.num_knots_coefficients))
)
self._init_values = init_values

def _set_default_args(self):
Expand Down Expand Up @@ -496,9 +496,9 @@ def predict(
seas_regression = np.sum(
seas_coef * seasonal_regressor_matrix.transpose(1, 0), axis=-2
)
seas_decomp[
"seasonality_{}".format(self._seasonality[idx])
] = seas_regression
seas_decomp["seasonality_{}".format(self._seasonality[idx])] = (
seas_regression
)
pos += len(cols)
total_seas_regression += seas_regression
if include_error:
Expand Down
6 changes: 3 additions & 3 deletions orbit/template/lgt.py
Original file line number Diff line number Diff line change
Expand Up @@ -231,9 +231,9 @@ def set_init_values(self):
-1.0,
1.0,
)
init_values[
LatentSamplingParameters.INITIAL_SEASONALITY.value
] = init_sea
init_values[LatentSamplingParameters.INITIAL_SEASONALITY.value] = (
init_sea
)
if self.num_of_positive_regressors > 0:
x = np.clip(
np.random.normal(
Expand Down
2 changes: 1 addition & 1 deletion tests/orbit/diagnostics/test_backtest.py
Original file line number Diff line number Diff line change
Expand Up @@ -102,7 +102,7 @@ def test_backtester_test_metrics(iclaims_training_data, metrics):
"missing_flag", [False, True], ids=["full-values", "missing-values"]
)
@pytest.mark.parametrize(
"make_daily_data", [({"seasonality": "single", "with_coef": False})], indirect=True
"make_daily_data", [{"seasonality": "single", "with_coef": False}], indirect=True
)
def test_backtester_ktr_and_missing_val(make_daily_data, missing_flag):
train_df, test_df, _ = make_daily_data
Expand Down
12 changes: 6 additions & 6 deletions tests/orbit/models/test_ktr.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
SMAPE_TOLERANCE = 0.2


@pytest.mark.parametrize("make_daily_data", [({"seasonality": None})], indirect=True)
@pytest.mark.parametrize("make_daily_data", [{"seasonality": None}], indirect=True)
def test_ktr_basic(make_daily_data):
train_df, _, _ = make_daily_data

Expand Down Expand Up @@ -101,7 +101,7 @@ def test_ktr_seasonality(make_daily_data, seasonality, seas_segments):

@pytest.mark.parametrize("regressor_col", [None, ["a", "b", "c"]])
@pytest.mark.parametrize(
"make_daily_data", [({"seasonality": "dual", "with_coef": True})], indirect=True
"make_daily_data", [{"seasonality": "dual", "with_coef": True}], indirect=True
)
def test_ktr_regression(make_daily_data, regressor_col):
train_df, test_df, coef = make_daily_data
Expand Down Expand Up @@ -134,7 +134,7 @@ def test_ktr_regression(make_daily_data, regressor_col):
[pd.date_range(start="2016-03-01", end="2019-01-01", freq="3M")],
)
@pytest.mark.parametrize(
"make_daily_data", [({"seasonality": "dual", "with_coef": True})], indirect=True
"make_daily_data", [{"seasonality": "dual", "with_coef": True}], indirect=True
)
def test_ktrx_coef_knot_dates(make_daily_data, regression_knot_dates):
train_df, test_df, coef = make_daily_data
Expand Down Expand Up @@ -167,7 +167,7 @@ def test_ktrx_coef_knot_dates(make_daily_data, regression_knot_dates):

@pytest.mark.parametrize("regression_knot_distance", [90, 120])
@pytest.mark.parametrize(
"make_daily_data", [({"seasonality": "dual", "with_coef": True})], indirect=True
"make_daily_data", [{"seasonality": "dual", "with_coef": True}], indirect=True
)
def test_ktrx_coef_knot_distance(make_daily_data, regression_knot_distance):
train_df, test_df, coef = make_daily_data
Expand Down Expand Up @@ -203,7 +203,7 @@ def test_ktrx_coef_knot_distance(make_daily_data, regression_knot_distance):
ids=["positive_only", "negative_only", "regular_only", "mixed_signs"],
)
@pytest.mark.parametrize(
"make_daily_data", [({"seasonality": "dual", "with_coef": True})], indirect=True
"make_daily_data", [{"seasonality": "dual", "with_coef": True}], indirect=True
)
def test_ktrx_regressor_sign(make_daily_data, regressor_signs):
train_df, test_df, coef = make_daily_data
Expand Down Expand Up @@ -256,7 +256,7 @@ def test_ktrx_regressor_sign(make_daily_data, regressor_signs):
],
)
@pytest.mark.parametrize(
"make_daily_data", [({"seasonality": "dual", "with_coef": True})], indirect=True
"make_daily_data", [{"seasonality": "dual", "with_coef": True}], indirect=True
)
def test_ktrx_prior_ingestion(make_daily_data, coef_prior_list):
train_df, test_df, coef = make_daily_data
Expand Down
16 changes: 8 additions & 8 deletions tests/orbit/models/test_ktrlite.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
"seasonality_fs_order", [None, [5]], ids=["default_order", "manual_order"]
)
@pytest.mark.parametrize(
"make_daily_data", [({"seasonality": "single", "with_coef": False})], indirect=True
"make_daily_data", [{"seasonality": "single", "with_coef": False}], indirect=True
)
def test_ktrlite_single_seas(make_daily_data, seasonality_fs_order):
train_df, _, _ = make_daily_data
Expand Down Expand Up @@ -45,7 +45,7 @@ def test_ktrlite_single_seas(make_daily_data, seasonality_fs_order):
"seasonality_fs_order", [None, [2, 5]], ids=["default_order", "manual_order"]
)
@pytest.mark.parametrize(
"make_daily_data", [({"with_dual_sea": True, "with_coef": False})], indirect=True
"make_daily_data", [{"with_dual_sea": True, "with_coef": False}], indirect=True
)
def test_ktrlite_dual_seas(make_daily_data, seasonality_fs_order):
train_df, _, _ = make_daily_data
Expand Down Expand Up @@ -74,7 +74,7 @@ def test_ktrlite_dual_seas(make_daily_data, seasonality_fs_order):


@pytest.mark.parametrize(
"make_daily_data", [({"with_dual_sea": True, "with_coef": False})], indirect=True
"make_daily_data", [{"with_dual_sea": True, "with_coef": False}], indirect=True
)
@pytest.mark.parametrize("level_segments", [20, 10, 2])
def test_ktrlite_level_segments(make_daily_data, level_segments):
Expand Down Expand Up @@ -112,7 +112,7 @@ def test_ktrlite_level_segments(make_daily_data, level_segments):
],
)
@pytest.mark.parametrize(
"make_daily_data", [({"seasonality": "single", "with_coef": False})], indirect=True
"make_daily_data", [{"seasonality": "single", "with_coef": False}], indirect=True
)
def test_ktrlite_level_knot_dates(make_daily_data, level_knot_dates):
train_df, test_df, coef = make_daily_data
Expand Down Expand Up @@ -141,7 +141,7 @@ def test_ktrlite_level_knot_dates(make_daily_data, level_knot_dates):

@pytest.mark.parametrize("level_knot_distance", [90, 120])
@pytest.mark.parametrize(
"make_daily_data", [({"seasonality": "single", "with_coef": False})], indirect=True
"make_daily_data", [{"seasonality": "single", "with_coef": False}], indirect=True
)
def test_ktrlite_level_knot_distance(make_daily_data, level_knot_distance):
train_df, test_df, coef = make_daily_data
Expand Down Expand Up @@ -175,7 +175,7 @@ def test_ktrlite_level_knot_distance(make_daily_data, level_knot_distance):
],
)
@pytest.mark.parametrize(
"make_daily_data", [({"seasonality": "single", "with_coef": False})], indirect=True
"make_daily_data", [{"seasonality": "single", "with_coef": False}], indirect=True
)
def test_ktrlite_seas_segments(make_daily_data, seas_segments):
train_df, test_df, coef = make_daily_data
Expand Down Expand Up @@ -204,7 +204,7 @@ def test_ktrlite_seas_segments(make_daily_data, seas_segments):


@pytest.mark.parametrize(
"make_daily_data", [({"seasonality": "single", "with_coef": False})], indirect=True
"make_daily_data", [{"seasonality": "single", "with_coef": False}], indirect=True
)
def test_ktrlite_predict_decompose(make_daily_data):
train_df, test_df, coef = make_daily_data
Expand Down Expand Up @@ -245,7 +245,7 @@ def test_ktrlite_predict_decompose(make_daily_data):


@pytest.mark.parametrize(
"make_daily_data", [({"seasonality": "single", "with_coef": False})], indirect=True
"make_daily_data", [{"seasonality": "single", "with_coef": False}], indirect=True
)
def test_ktrlite_predict_decompose_point_estimate(make_daily_data):
train_df, test_df, coef = make_daily_data
Expand Down