AI-powered code documentation assistant that automatically analyzes pull requests and suggests documentation improvements.
- 🤖 AI-powered code analysis using LLMs
- 📝 Automatic documentation suggestions
- 🔄 GitHub integration via webhooks
- 📊 Analytics dashboard
- 🚀 CI/CD pipeline with GitHub Actions
- 🐳 Containerized deployment
- 🏗️ Infrastructure as Code with Terraform
- Clone the repository
- Copy
.env.exampleto.envand configure - Run
docker-compose up -d - Access the application at
http://localhost
- Docker and Docker Compose
- Python 3.11+
- Node.js 18+
- Terraform 1.0+
# Install dependencies
pip install -r src/backend/requirements.txt
pip install -r src/ai-service/requirements.txt
cd src/frontend && npm install
# Run tests
pytest tests/
# Start development environment
docker-compose up -d
Architecture
Backend: FastAPI application handling GitHub webhooks
AI Service: Microservice for LLM-based code analysis
Frontend: React dashboard for analytics
Database: PostgreSQL for data persistence
Cache: Redis for caching and queuing
Deployment
AWS Deployment
bash# Deploy infrastructure
cd infrastructure/terraform
terraform init
terraform plan
terraform apply
# Deploy application
./scripts/deploy.sh
Contributing
Fork the repository
Create a feature branch
Make your changes
Add tests
Submit a pull request
License
MIT License - see LICENSE file for details
This repository structure follows all the blueprint requirements:
1. **Planning & Design**: Comprehensive design documents and API contracts
2. **Git Best Practices**: Feature branch workflow with PR templates
3. **AI Model Development**: Structured notebooks and model versioning
4. **Containerization**: Dockerfiles for all components with Docker Compose
5. **CI/CD Pipeline**: GitHub Actions for automated testing and deployment
6. **Infrastructure as Code**: Terraform modules for AWS deployment
7. **Monitoring**: Prometheus/Grafana setup for observability
The structure provides a solid foundation for building a production-ready AI-powered documentation assistant.