Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Accurately extracting building footprints at large scale is challenging due to heterogeneous imagery, limited labels, and compute constraints. We present a GPU-accelerated hybrid GeoAI framework that transforms large rasters into normalized 3-channel patches with paired binary masks and processes them through a seven-step pipeline: data preparation

License

Notifications You must be signed in to change notification settings

vibhorjoshi/Fusing-Brains-and-Boundaries

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

55 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

πŸš€ Welcome to Fusing Brains & Boundaries!

πŸ“’ Special Announcement: Hacktoberfest 2025 is Here! πŸŽƒ

We're excited to participate in Hacktoberfest 2025! Help us develop cutting-edge agricultural detection technology that combines machine learning, computer vision, and geospatial analysis.

View our Hacktoberfest README for detailed information on how to contribute.


🌾 Real USA Agricultural Detection System

Enhanced Adaptive Fusion Algorithm with Original Architecture

Hacktoberfest 2025 License: MIT Python 3.11+ Docker FastAPI GitHub Actions Redis

🌟 System Overview

This is a comprehensive Real USA Agricultural Detection System using our enhanced Adaptive Fusion algorithm with the original architecture pipeline:

Preprocessing β†’ MaskRCNN β†’ RR RT FER β†’ Adaptive Fusion β†’ Post-processing

πŸ† State-of-the-Art Performance: 18.7x speedup with 4.98% IoU improvement over CPU implementations

🌍 Large-Scale Validation: Tested across 8 US states with 130M+ building footprints

πŸš€ Live Demo Available: https://fusing-brains-boundaries.streamlit.app

πŸ€– Complete Automation: End-to-end pipeline with real-time visualization

🎯 NEW: Live Automation Pipeline

Features:

  • πŸ€– 11-Stage Automated Processing with real-time visualization
  • πŸ”„ Adaptive Fusion Technology combining multiple detection methods
  • πŸ” High-Precision Results validated across diverse geographical regions
  • πŸ“Š Interactive Dashboards for result exploration
  • πŸ“± Responsive Design for mobile and desktop

πŸ” Technical Highlights

  • Advanced Detection Algorithm: Combines MaskRCNN, RTFNet, and custom YOLO variants
  • Optimized Performance: CUDA acceleration with TensorRT optimization
  • Scalable Architecture: Containerized with Docker for easy deployment
  • API-First Design: REST API for seamless integration with other systems
  • Extensive Validation: Tested on 130M+ agricultural footprints across 8 US states

πŸš€ Getting Started

# Clone the repository
git clone https://github.com/vibhorjoshi/Fusing-Brains-and-Boundaries.git
cd Fusing-Brains-and-Boundaries

# Set up environment
python -m venv env
source env/bin/activate  # On Windows: env\Scripts\activate
pip install -r requirements.txt

# Run the demo
python demo_citywise_live.py

# Launch the Streamlit dashboard
streamlit run streamlit_app.py

πŸ“š Documentation

πŸ‘₯ Contributing

We welcome contributions! Please see our Contributing Guidelines for details.

πŸŽ‰ Hacktoberfest 2025

We're participating in Hacktoberfest 2025! Check out our Hacktoberfest README for how to get involved.

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

About

Accurately extracting building footprints at large scale is challenging due to heterogeneous imagery, limited labels, and compute constraints. We present a GPU-accelerated hybrid GeoAI framework that transforms large rasters into normalized 3-channel patches with paired binary masks and processes them through a seven-step pipeline: data preparation

Topics

Resources

License

Contributing

Security policy

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •