Thanks to visit codestin.com
Credit goes to github.com

Skip to content

vlongle/vlmx

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

3 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

vlmx

Caution

This readme is primarily generated by a VLM (Claude 3.7 Sonnet).

Because it's 2025 and typing more than 4 letters is so 2024. Let VLMs do everything while you touch grass.

🌟 Features

  • Multi-Provider Support: OpenAI, Claude, Gemini - we got 'em all
  • Context Magic: Smart file handling that just worksβ„’
  • Artifact Handling: Images, logs, code - vlmx remembers so you don't have to
  • In-Context Learning: Show, don't tell (actually, let the VLM do both)
  • Tool Use: Built-in Swiss Army knife for VLMs

πŸš€ Quick Start

git clone https://github.com/vlongle/vlmx.git
cd vlmx
conda create -n vlmx python=3.9
conda activate vlmx
pip install -e .

πŸ“– Basic Usage

from vlmx.agent import Agent, AgentConfig
from dotenv import load_dotenv
import os

# Load API key from .env file
load_dotenv()
API_KEY = os.environ.get('API_KEY')


SYSTEM_INSTRUCTION = "Do whatever I say correctly."

class HelperAgent(Agent):
    OUT_RESULT_PATH = "test.txt"

    def _make_system_instruction(self):
        return SYSTEM_INSTRUCTION

    def _make_prompt_parts(self, question: str):
        return question

    def parse_response(self, response):
        print("response:", response.text)
        ## string_to_file(response.txt, "path.txt")


# Initialize the agent
agent = HelperAgent(AgentConfig(
    model_name="gemini-2.0-flash-thinking-exp-01-21",
    out_dir="test_results",
    api_key=API_KEY
))

# Generate a prediction
response = agent.generate_prediction("What's 2+2?")

For more advanced features like context-aware agents, tool usage, and in-context learning, check out the quickstart.ipynb notebook in the repository.

πŸ“š Documentation

We have no documentation because you can just ask the VLM to explain it to you.

🀝 Contributing

  1. Fork it
  2. Ask a VLM to code it
  3. PR it
  4. Profit?

πŸ“„ License

MIT License - Because sharing is caring, and VLMs care about everyone.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published