Thanks to visit codestin.com
Credit goes to github.com

Skip to content

w13364/yolov8rknn-handpose

Repository files navigation


Dependencies.

To run the application, you have to:

  • OpenCV 64-bit installed.
  • Optional: Code::Blocks. ($ sudo apt-get install codeblocks)

Installing the dependencies.

Start with the usual

$ sudo apt-get update 
$ sudo apt-get upgrade
$ sudo apt-get install cmake wget curl

OpenCV

RKNPU2

$ git clone https://github.com/airockchip/rknn-toolkit2.git

We only use a few files.

rknn-toolkit2-master
│      
└── rknpu2
    │      
    └── runtime
        │       
        └── Linux
            │      
            └── librknn_api
                ├── aarch64
                │   └── librknnrt.so
                └── include
                    ├── rknn_api.h
                    ├── rknn_custom_op.h
                    └── rknn_matmul_api.h

$ cd ~/rknn-toolkit2-master/rknpu2/runtime/Linux/librknn_api/aarch64
$ sudo cp ./librknnrt.so /usr/local/lib
$ cd ~/rknn-toolkit2-master/rknpu2/runtime/Linux/librknn_api/include
$ sudo cp ./rknn_* /usr/local/include

Or use Cmake.

$ cd *MyDir*
$ mkdir build
$ cd build
$ cmake ..
$ make -j4

onnx导出必须用rknn官网的导,必须要导出4层。

用这两个文件导出你对应的rknn版本。

connx.py

convertrknn.py

模型输出必须保持4层,原因是rknn不支持yolo一层输出,会裁减掉yolo的cfl。

图片

cpp代码运行示例,帧率问题可以进一步改进,要做其他事情暂时只demo了。

./YoloV8_NPU rk3568/v8hand.rknn <你自己的图片路径>

图片

About

yolov8,handpose,rknn

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published