A powerful AI-driven proposal generation tool that leverages large language models to automate the creation of technical proposals and responses.
-
Automated Proposal Generation
- Generates point-by-point response format proposals based on requirements matrix
- Automatically formats content with proper heading levels (1, 2, 3)
- Preserves formatting for body text, images, and bullet points
- Supports automatic chapter numbering
- Detailed execution logging with timing information
- Preserves original input files by saving outputs to separate directory
-
Smart Content Management
- Automatically copies relevant product documentation to responses
- Preserves all formatting including images, tables, and bullet points
- Can rewrite product descriptions to match different proposal requirements
- Uses AI to generate content for missing features
- Supports both OpenAI and Baidu AI models
-
Requirements Processing
- Generates technical requirements deviation tables
- Automatically fills point-by-point responses in requirements matrix
- Uses format: "Answer: Fully supported, {AI-generated response}"
- Adds corresponding chapter numbers from the proposal
- Provides detailed progress tracking for each requirement
-
Document Processing
- Breaks down product manuals into reusable components
- Improves proposal generation performance
- Enables customization of features as needed
- Supports up to 3 levels of headings
- Maintains separate input and output directories for safe file handling
-
Python Environment Setup
# Create a virtual environment python -m venv venv # Activate virtual environment # On Windows .\venv\Scripts\activate # On Unix or MacOS source venv/bin/activate # Verify Python environment python --version
-
Dependencies Installation
# Install dependencies pip install -r requirements.txt # Configure environment variables cp .env.example .env # Edit .env file with your API keys
-
API Configuration
- Configure either ChatGPT or Baidu Qianfan model API
- ERNIE-Speed-8K (free model) is recommended for Baidu
- Add API keys to .env file
- Set
USE_BAIDU=true/falseto switch between APIs - Configure model parameters (temperature, max tokens) in .env
-
Document Preparation
- Place input files in
data/input/directory:- Product manual as
标书内容.docx - Requirements matrix as
需求对应表.xlsx
- Product manual as
- Template file should be in
data/templates/Template.docx - Ensure proper use of styles:
- Body Text
- Heading 1
- Heading 2
- Heading 3
- Place input files in
-
Document Extraction
python src/Extract_Word.py
- Generates component documents from product manual
- Verify generated files for accuracy
-
Requirements Setup
- Fill in the requirements table (
需求对应表.xlsx):- Column B: Main requirements
- Column C: Sub-requirements (generates level 2 and 3 headings)
- Column G: Corresponding product manual section (use 'X' if none)
- Fill in the requirements table (
-
Proposal Generation
python src/Generate.py
- Generated files will be saved in
data/output/directory:需求对应表_输出.xlsx: Updated requirements matrix标书内容_输出.docx: Generated proposal document
- Progress and timing information will be displayed during execution
- Generated files will be saved in
ProposalLLM/
├── data/ # Data directory
│ ├── input/ # Input files (original files)
│ ├── output/ # Output files (generated files)
│ └── templates/ # Template files
├── examples/ # Example files
├── src/ # Source code
├── .env.example # Environment template
├── requirements.txt # Dependencies
└── README.md # Documentation
-
自动化标书生成
- 根据需求对应表自动生成点对点应答格式标书
- 自动设置标题1、2、3级格式
- 保持正文、图片、项目符号等格式
- 支持自动章节编号
- 详细的执行日志和时间统计
- 输出文件保存在独立目录,保护原始文件
-
智能内容管理
- 自动从产品文档复制相关内容到应答中
- 完整保留图片、表格、项目符号等格式
- 可根据不同标书需求自动重写产品描述
- 对缺失功能使用AI自动生成内容
- 支持OpenAI和百度AI模型
-
需求处理
- 生成技术需求偏离表
- 自动填写需求对应表中的点对点应答
- 使用格式:"答:全面支持,{AI生成的回应}"
- 自动填写对应的标书章节号
- 提供每个需求的处理进度跟踪
-
文档处理
- 将产品手册拆分为可复用的组件
- 提高标书生成性能
- 支持针对性功能修改
- 支持最多3级标题
- 采用独立的输入输出目录,安全处理文件
-
Python环境配置
# 创建虚拟环境 python -m venv venv # 激活虚拟环境 # Windows系统 .\venv\Scripts\activate # Unix或MacOS系统 source venv/bin/activate # 验证Python环境 python --version
-
安装依赖
# 安装依赖 pip install -r requirements.txt # 配置环境变量 cp .env.example .env # 编辑.env文件,填入API密钥
-
API配置
- 配置ChatGPT或百度千帆模型API
- 推荐使用百度ERNIE-Speed-8K(免费模型)
- 在.env文件中添加API密钥
- 通过
USE_BAIDU=true/false切换API - 在.env中配置模型参数(温度、最大token数)
-
文档准备
- 在
data/input/目录中放置输入文件:- 产品说明手册:
标书内容.docx - 需求对应表:
需求对应表.xlsx
- 产品说明手册:
- 模板文件放在
data/templates/Template.docx - 确保正确使用以下样式:
- 正文
- 标题1
- 标题2
- 标题3
- 在
-
文档提取
python src/Extract_Word.py
- 生成产品手册对应的组件文档
- 验证生成文件的准确性
-
需求设置
- 填写需求对应表(
需求对应表.xlsx):- B列:主要需求
- C列:子需求(用于生成二级、三级标题)
- G列:对应产品说明书章节(如无则填'X')
- 填写需求对应表(
-
标书生成
python src/Generate.py
- 生成的文件将保存在
data/output/目录:需求对应表_输出.xlsx:更新后的需求对应表标书内容_输出.docx:生成的标书文档
- 执行过程中会显示进度和时间统计信息
- 生成的文件将保存在
ProposalLLM/
├── data/ # 数据目录
│ ├── input/ # 输入文件(原始文件)
│ ├── output/ # 输出文件(生成文件)
│ └── templates/ # 模板文件
├── examples/ # 示例文件
├── src/ # 源代码
├── .env.example # 环境变量模板
├── requirements.txt # 项目依赖
└── README.md # 项目文档