Thanks to visit codestin.com
Credit goes to github.com

Skip to content
forked from nuochenpku/COMEDY

This is the official project of paper: Compress to Impress: Unleashing the Potential of Compressive Memory in Real-World Long-Term Conversations

wjkim9653/COMEDY

 
 

Repository files navigation

COMEDY

This is the Re-Proudction project of paper: Compress to Impress: Unleashing the Potential of Compressive Memory in Real-World Long-Term Conversations

Ko-COMEDY DataSet

  • Need to save task1_dataset/, task1_dataset/, and task1_dataset/ directories under Data/ko_COMEDY/ direcotry.
  • Run the following bash commands to create Dataset for Fine-Tuning.
    cd Data/ko_COMEDY
    python load_ko_COMEDY.py
    

LoRA FineTuning

  • Run following command to check whether fine-tuning + saving works as intended (with 100 sample data)
    python training/step1_supervised_finetuning/main_peft.py \
       --test \
       --context_window 4096 \
       --lora_rank 32 \
       --epochs 3 \
       --per_device_batch_size 1 \
       --gradient_accumulation_steps 4 \
       --checkpointing_ratio 0.25 \
       --fp16 \
       --wandb_run_name test
    
  • Remove any logs or checkpoint models from test run (above), and run the command below to conduct actual fine-tuning
    rm -rf Models/*
    rm -rf wandb/*
    
    python training/step1_supervised_finetuning/main_peft.py \
       --context_window 4096 \
       --lora_rank 32 \
       --epochs 3 \
       --per_device_batch_size 1 \
       --gradient_accumulation_steps 4 \
       --checkpointing_ratio 0.25 \
       --fp16 \
       --wandb_run_name lora_finetuning_run_1
    

About

This is the official project of paper: Compress to Impress: Unleashing the Potential of Compressive Memory in Real-World Long-Term Conversations

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 89.8%
  • Shell 10.0%
  • Jupyter Notebook 0.2%