This is the Re-Proudction project of paper: Compress to Impress: Unleashing the Potential of Compressive Memory in Real-World Long-Term Conversations
- Need to save
task1_dataset/,task1_dataset/, andtask1_dataset/directories underData/ko_COMEDY/direcotry. - Run the following bash commands to create Dataset for Fine-Tuning.
cd Data/ko_COMEDY python load_ko_COMEDY.py
- Run following command to check whether fine-tuning + saving works as intended (with 100 sample data)
python training/step1_supervised_finetuning/main_peft.py \ --test \ --context_window 4096 \ --lora_rank 32 \ --epochs 3 \ --per_device_batch_size 1 \ --gradient_accumulation_steps 4 \ --checkpointing_ratio 0.25 \ --fp16 \ --wandb_run_name test - Remove any logs or checkpoint models from test run (above), and run the command below to conduct actual fine-tuning
rm -rf Models/* rm -rf wandb/*python training/step1_supervised_finetuning/main_peft.py \ --context_window 4096 \ --lora_rank 32 \ --epochs 3 \ --per_device_batch_size 1 \ --gradient_accumulation_steps 4 \ --checkpointing_ratio 0.25 \ --fp16 \ --wandb_run_name lora_finetuning_run_1